873 resultados para 175-1079B
em Publishing Network for Geoscientific
Resumo:
Sediment samples from ODP Site 1085 were investigated in order to obtain more information on the initiation and development of the Benguela upwelling system during the middle and upper Miocene. In particular, our intent was to establish the causes of the upwelling as well as the response of the upwelling regime to the development of the Antarctic Circumpolar Current. Based on changes in the calcareous dinoflagellate cyst association, we found an initial increase of the dinoflagellate cyst productivity, probably related to the initiation of upwelling about 11.8 Ma ago. Two distinct increases in cyst productivity in conjunction with temperature decreases of the upper water masses reflect upwelling pulses off Namibia and occur at the end of the Miocene cooling events Mi5 (about 11.5 Ma) and Mi6 (about 10.5 Ma). Both cooling events are associated with an ice volume increase in Antarctica and are thought to have led to an increase in southeasterly winds, possibly causing these two upwelling pulses. We demonstrate a decrease in dinoflagellate cyst productivity and enhanced terrigenous input via the Orange River after the Mi5 event. At about 11.1 Ma, the dinoflagellate cyst productivity increases again. The polar cyst species Caracomia arctica occurs here for the first time. This implies an influence of subantarctic mode water and therefore a change in the quality of the upwelling water which allowed the Benguela upwelling to develop into modern conditions. From about 10.4 Ma, C. arctica forms a permanent part of the association, pointing to an establishment of the upwelling regime.
Resumo:
Pollen and stable carbon (d13C) and hydrogen (dD) isotope ratios of terrestrial plant wax from the South Atlantic sediment core, ODP Site 1085, is used to reconstruct Miocene to Pliocene changes of vegetation and rainfall regime of western southern Africa. Our results reveal changes in the relative amount of precipitation and indicate a shift of the main moisture source from the Atlantic to the Indian Ocean during the onset of a major aridification 8 Ma ago. We emphasise the importance of declining precipitation during the expansion of C4 and CAM (mainly succulent) vegetation in South Africa. We suggest that the C4 plant expansion resulted from an increased equator-pole temperature gradient caused by the initiation of strong Atlantic Meridional Overturning Circulation following the shoaling of the Central American Seaway during the Late Miocene.