875 resultados para 175-1078
em Publishing Network for Geoscientific
Resumo:
ODP Site 1078 situated under the coast of Angola provides the first record of the vegetation history for Angola. The upper 11 m of the core covers the past 30 thousand years, which has been analysed palynologically in decadal to centennial resolution. Alkenone sea surface temperature estimates were analysed in centennial resolution. We studied sea surface temperatures and vegetation development during full glacial, deglacial, and interglacial conditions. During the glacial the vegetation in Angola was very open consisting of grass and heath lands, deserts and semi-deserts, which suggests a cool and dry climate. A change to warmer and more humid conditions is indicated by forest expansion starting in step with the earliest temperature rise in Antarctica, 22 thousand years ago. We infer that around the period of Heinrich Event 1, a northward excursion of the Angola Benguela Front and the Congo Air Boundary resulted in cool sea surface temperatures but rain forest remained present in the northern lowlands of Angola. Rain forest and dry forest area increase 15 thousand years ago. During the Holocene, dry forests and Miombo woodlands expanded. Also in Angola globally recognised climate changes at 8 thousand and 4 thousand years ago had an impact on the vegetation. During the past 2 thousand years, savannah vegetation became dominant.
Resumo:
The distribution of pollen in marine sediments is used to record vegetation change on the continent. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in the marine surface sediments and the occurrence of the source plants on the adjacent continent. To investigate land-sea interactions during deglaciation, we compare proxies for continental (pollen assemblages) and marine conditions (alkenone-derived sea surface temperatures) of two high-resolution, radiocarbon-dated sedimentary records from the tropical southeast Atlantic. The southern site is located West of the Cunene River mouth; the northern site is located West of the Angolan Huambe Mountains. It is inferred that the vegetation in Angola developed from Afroalpine and open savannah during the last Glacial maximum (LGM) via Afromontane Podocarpus forest during Heinrich Event 1 (H1), to an early increase of lowland forest after 14.5 ka. The vegetation record indicates dry and cold conditions during the LGM, cool and wet conditions during H1 and a gradual rise in temperature starting well before the Younger Dryas (YD) period. Terrestrial and oceanic climate developments seem largely running parallel, in contrast to the situation ca. 5° further South, where marine and terrestrial developments diverge during the YD. The cool and wet conditions in tropical West Africa, South of the equator, during H1 suggest that low-latitude insolation variation is more important than the slowdown of the thermohaline circulation for the climate in tropical Africa.
Resumo:
High resolution planktonic foraminifera Mg/Ca paleotemperatures and oxygen isotopes of seawater of Ocean Drilling Program (ODP) Site 1078 (off Angola) have been reconstructed and reveal insights into the seasonal thermal evolution of the Angola Current (AC), the Angola-Benguela Front (ABF), and the Benguela Current (BC) during the last glacial (50-23.5 ka BP). Special emphasis is put on time intervals possibly associated with the North Atlantic Heinrich Stadials (HS), which are thought to lead to an accumulation of heat in the South Atlantic due to a reduction of the Atlantic Meridional Overturning Circulation (AMOC). Within dating uncertainties, Globigerinoides ruber (pink) Mg/Ca-based sea surface temperature (SST) estimates that represent southern hemisphere summer surface conditions show several warming episodes that coincide with North Atlantic HS, thus supporting the concept of the bipolar thermal seesaw. In contrast, the Mg/Ca-based temperatures of Globigerina bulloides, representing the SST of the ABF/BC system during southern hemisphere winter, show no obvious response to the North Atlantic HS in the study area. We suggest that surface water cooling during the winter season is due to enhanced upwelling or upwelling of colder water masses which has most likely mitigated a warming of the ABF/BC system during HS. We further speculate that the seasonal asymmetry in our SST record results from seasonal differences in the dominance of atmospheric and oceanic teleconnections during periods of northern high latitude cooling.
Resumo:
To address the connection between tropical African vegetation development and high-latitude climate change we present a high-resolution pollen record from ODP Site 1078 (off Angola) covering the period 50-10 ka BP. Although several tropical African vegetation and climate reconstructions indicate an impact of Heinrich Stadials (HSs) in Southern Hemisphere Africa, our vegetation record shows no response. Model simulations conducted with an Earth System Model of Intermediate Complexity including a dynamical vegetation component provide one possible explanation. Because both precipitation and evaporation increased during HSs and their effects nearly cancelled each other, there was a negligible change in moisture supply. Consequently, the resulting climatic response to HSs might have been too weak to noticeably affect the vegetation composition in the study area. Our results also show that the response to HSs in southern tropical Africa neither equals nor mirrors the response to abrupt climate change in northern Africa.
Resumo:
Sediment samples from ODP Site 1085 were investigated in order to obtain more information on the initiation and development of the Benguela upwelling system during the middle and upper Miocene. In particular, our intent was to establish the causes of the upwelling as well as the response of the upwelling regime to the development of the Antarctic Circumpolar Current. Based on changes in the calcareous dinoflagellate cyst association, we found an initial increase of the dinoflagellate cyst productivity, probably related to the initiation of upwelling about 11.8 Ma ago. Two distinct increases in cyst productivity in conjunction with temperature decreases of the upper water masses reflect upwelling pulses off Namibia and occur at the end of the Miocene cooling events Mi5 (about 11.5 Ma) and Mi6 (about 10.5 Ma). Both cooling events are associated with an ice volume increase in Antarctica and are thought to have led to an increase in southeasterly winds, possibly causing these two upwelling pulses. We demonstrate a decrease in dinoflagellate cyst productivity and enhanced terrigenous input via the Orange River after the Mi5 event. At about 11.1 Ma, the dinoflagellate cyst productivity increases again. The polar cyst species Caracomia arctica occurs here for the first time. This implies an influence of subantarctic mode water and therefore a change in the quality of the upwelling water which allowed the Benguela upwelling to develop into modern conditions. From about 10.4 Ma, C. arctica forms a permanent part of the association, pointing to an establishment of the upwelling regime.