112 resultados para 1510

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen isotopic compositions of the tests of planktonic foraminifera from several Deep Sea Drilling Project sites provide a general picture of low-latitude marine temperatures from Maastrichtian time to the present. Bottom temperatures determined from the isotopic compositions of benthonic foraminifera are interpreted as being indicative of high-latitude surface temperatures. Prior to the beginning of middle Miocene time, high- and low-latitude temperatures changed in parallel fashion. Following an apparently small and short-lived drop in temperature near the Tertiary-Cretaceous boundary, temperatures remained warm and relatively constant through Paleocene and early and middle Eocene time; bottom temperatures then were on the order of 12°C. A sharp temperature drop in late Eocene time was followed by a more gradual lowering of temperature, culminating in a late Oligocene high-latitude temperature minimum of about 4°C. A temperature rise through early Miocene time was followed in middle Miocene time by a sudden divergence of high- and low-latitude temperatures: high-latitude temperatures dropped dramatically, perhaps corresponding to the onset of major glaciation in Antarctica, but low-latitude temperatures remained constant or perhaps increased. This uncoupling of high-and low-latitude temperatures is postulated to be related to the establishment of a circum-Antarctic circulation similar to that of today. A further drop in high-latitude temperatures in late Pliocene time probably signaled the onset of a major increase in polar glaciation, including extensive sea-ice formation. Early Miocene, small-amplitude (1 per mil) sympathetic fluctuations in isotopic compositions of planktonic and benthonic foraminifera have been identified. These have a period of several hundred thousand years. Superimposed upon these are much more rapid and smaller fluctuations (0.2 to 0.5 per mil) with a period of about 80000 to 90000 yr. This is similar to the period observed for Pleistocene isotopic temperature fluctuations. In low latitudes, much smaller vertical temperature gradients seem to have existed during Maastrichtian and Paleogene time than exist at present. The absence of a sharply defined thermocline during early Tertiary time is also suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A diatom-based sea-ice concentration (SIC) transfer function is developed using 72 surface samples from west of Greenland and around Iceland, and through comparison with the associated modern SIC. Canonical correspondence analysis on surface sediment diatoms and monthly average of SIC reveals that April SIC is the most important environmental factor controlling the distribution of diatoms in the area, and permits the development of a diatom-based SIC transfer function. The consistency between reconstructed SIC based on diatoms from West Greenland and the instrumental and documentary data during the last ~75 years demonstrates that the diatom-based SIC reconstruction is reliable for studying the palaeoceanography off West Greenland. Relatively warm conditions with strong influence of the Irminger Current (IC) are indicated for the early part of the record (~5000-3860 cal. yr BP), corresponding in time to the latest part of the Holocene Thermal Maximum. The April SIC oscillated around the mean value between 3860 and 1510 cal. yr BP and was above mean afterwards, particularly during the time interval 1510-1120 cal. yr BP and after 650 cal. yr BP, indicating more extensive sea-ice cover in Disko Bugt. A high degree of consistency between the reconstructed April SIC and changes in the diatom species suggests that the sea-ice condition in Disko Bugt is strongly influenced by variations in the relative strength of two components of the West Greenland Current, i.e. the cold East Greenland Current and the relatively warm IC.