138 resultados para 147-895F
em Publishing Network for Geoscientific
Resumo:
The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of <1 Ma peridotites at Hess Deep occurred at high temperatures (200°-400°C) and low water/rock ratios. Oxidation of ferrous iron to magnetite maintained low fO2 and produced a reduced, low-sulfur assemblage including NiFe alloy. Small amounts of sulfate reduction by thermophilic microbes occurred as the system cooled, producing low-delta34S sulfide (1.5? to -23.7?). In contrast, serpentinization of Iberian Margin peridotites occurred at low temperatures(~20°-200°C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-delta34S sulfide (~15 to ~43?) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high delta34S of total sulfur (mean ~8?). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in delta34S of total sulfur (mean ~ -5?). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 * 10**12 g S/yr from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.
Resumo:
The trace element compositions of Hadean zircons have been used in two ways to argue for the existence of Hadean continental crust. One argument is based on low crystallization temperatures of Hadean zircons that have been determined using a novel geothermometer based on the Ti content of zircons in equilibrium with rutile. The second argument is based on using the trace element abundances in zircons to calculate their parental melt compositions, especially the rare earth elements. Here we demonstrate that zircons that grow from a melt formed by basalt differentiation at modern mid-ocean ridges cannot be unambiguously distinguished from Hadean zircons on either of these grounds. Thus, we conclude that the trace element compositions of Hadean zircons are permissive of models that do not include the generation of continental crust in the Hadean.