483 resultados para 145-884E

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic field strength and magnetic susceptibility were logged with the geological high-resolution magnetic tool (GHMT) at three of the holes drilled during Ocean Drilling Program Leg 178 to the west of the Antarctic Peninsula. Polarity stratigraphies derived from the GHMT logs bear close resemblance to the polarities determined from core paleomagnetism at two of the holes and were used for magnetostratigraphic dating, especially in intervals where no core was recovered. Polarity is determined in the following way. First, the susceptibility log is used to determine the induced magnetization of the sediment. Then the background field, the field of the metal drill pipe, and the field anomaly of the sediment's induced magnetization are removed from the measured total field to leave the downhole anomaly of the sediment's remanent magnetization. The sign (positive or negative) of this anomaly gave a good polarity stratigraphy for Holes 1095B and 1096C, which are located in sediment drifts. A further step, correlation analysis, is based on the fact that in an interval of normal polarity sediment the remanent anomaly will correlate with the induced anomaly, whereas in reversed polarity sediment they will anticorrelate. The magnetite-rich, fine-grained sediments found in the two holes drilled into the sediment drift have a ratio of remanent to induced magnetization (the Koenigsberger ratio) of ~1. In contrast, the coarser-grained diamict sediments on the shelf have a Koenigsberger ratio of ~0.2, and extracting the remanent part of the downhole anomaly is much more difficult. By the comparison of core and log results, we can assess the viability of the GHMT polarities in detail, what proportion of the overprint in the cores is imparted by the coring process, and whether any paleointensity information is extractable from the GHMT logs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000), but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal (Broecker et al., 2004, doi:10.1126/science.1102293). Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that -together with previously published results (Keigwin, 1998, doi:10.1029/98PA00874)- show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago) (Marchitto et al., 2007, doi:10.1126/science.1138679; Monnin et al., 2001, doi:10.1126/science.291.5501.112), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition ~14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration (Monnin et al., 2001, doi:10.1126/science.291.5501.112). We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic (Robinson et al., 2005, doi:10.1126/science.1114832; Skinner nd Shackleton, 2004, doi:10.1029/2003PA000983; McManus et al., 2004, doi:10.1038/nature02494), which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000; Boyle, 1988, doi:10.1038/331055a0), but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: