337 resultados para 129-800
em Publishing Network for Geoscientific
Resumo:
Sites 800 and 801 in the Pigafetta Basin allow the sedimentary history over the oldest remaining Pacific oceanic crust to be established. Six major deposition stages and events are defined by the main lithologic units from both sites. Mineralogical and chemical investigations were run on a large set of samples from these units. The data enable the evolution of the sediments and their depositional environments to be characterized in relation to the paleolatitudinal motion of the sites. The upper part of the basaltic crust at Site 801 displays a complex hydrothermal and alteration evolution expressed particularly by an ochre siliceous deposit comparable to that found in the Cyprus ophiolite. The oldest sedimentary cover at Site 801 was formed during the Callovian-Bathonian (stage 1) with red basal siliceous and metalliferous sediments similar to those found in supraophiolite sequences, and formed near an active ridge axis in an open ocean. Biosiliceous sedimentation prevailed throughout the Oxfordian to Campanian, with rare incursions of calcareous input during the middle Cretaceous (stages 2, 4, and 5). The biosiliceous sedimentation was drastically interrupted during the Aptian-Albian by thick volcaniclastic turbidite deposits (stage 3). The volcanogenic phases are pervasively altered and the successive secondary mineral parageneses (with smectites, celadonite, clinoptilolite, phillipsite, analcime, calcite, and quartz) define a "mineral stratigraphy" within these deposits. From this mineral stratigraphy, a similar lithologic layer is defined at the top of the Site 800 turbidite unit and the bottom of the Site 801 turbidite unit. Then, the two sites appear to have been located at the same distal distance from a volcanic source (hotspot). They crossed this locality, at about 10°S, at different times (latest Aptian for Site 800, middle Albian for Site 801). The Cretaceous siliceous sedimentation stopped during the late Campanian and was followed by deposition of Cenozoic pelagic red clay (stage 6). This deep-sea facies, which formed below the carbonate compensation depth, contains variable zeolite authigenesis in relation to the age of deposition, and records the global middle Cenozoic hiatus events. At the surface, the red clay from this part of the Pacific shows a greater detrital component than its equivalents from the central Pacific deep basins.
Resumo:
Since studies on deep-sea cores were carried out in the early 1990s it has been known that ambient temperature may have a marked affect on apatite fission track annealing. Due to sluggish annealing kinetics, this effect cannot be quantified by laboratory annealing experiments. The unknown amount of low-temperature annealing remains one of the main uncertainties for extracting thermal histories from fission track data, particularly for samples which experienced slow cooling in shallow crustal levels. To further elucidate these uncertainties, we studied volcanogenic sediments from five deep-sea drill cores, that were exposed to maximum temperatures between ~10° and 70°C over geological time scales of ~15-120 Ma. Mean track lengths (MTL) and etch pit diameters (Dpar) of all samples were measured, and the chemical composition of each grain analyzed for age and track length measurements was determined by electron microprobe analysis. Thermal histories of the sampled sites were independently reconstructed, based on vitrinite reflectance measurements and/or 1D numerical modelling. These reconstructions were used to test the most widely used annealing models for their ability to predict low-temperature annealing. Our results show that long-term exposure to temperatures below the temperature range of the nominal apatite fission track partial annealing zone results in track shortening ranging between 4 and 11%. Both chlorine content and Dpar values explain the downhole annealing patterns equally well. Low chlorine apatite from one drill core revealed a systematic relation between Si-content and Dpar value. The question whether Si-substitution in apatite has direct and systematic effects on annealing properties however, cannot be addressed by our data. For samples, which remained at temperatures <30°C, and which are low in chlorine, the Laslett et al. [Laslett G., Green P., Duddy I. and Gleadow A. (1987) Thermal annealing of fission tracks in apatite. Chem. Geol. 65, 1-13] annealing model predicts MTL up to 0.6 µm longer than those actually measured, whereas for apatites with intermediate to high chlorine content, which experienced temperatures >30°C, the predictions of the Laslett et al. (1987) model agree with the measured MTL data within error levels. With few exceptions, predictions by the Ketcham et al. [Ketcham R., Donelick R. and Carlson W. (1999) Variability of apatite fission-track annealing kinetics. III: Extrapolation to geological time scales. Am. Mineral. 84/9, 1235-1255] annealing model are consistent with the measured data for samples which remained at temperatures below ~30°C. For samples which experienced maximum temperatures between ~30 and 70°C, and which are rich in chlorine, the Ketcham et al. (1999) model overestimates track annealing.
Resumo:
Evidence for the dissolution of biogenic silica at the base of pelagic sections supports the hypothesis that much of the chert formed in the Pacific derives from the dissolution and reprecipitation of this silica by hydrothermal waters. As ocean bottom waters flow into and through the crust, they become warmer. Initially they remain less saturated with respect to dissolved silica than pore water in the overlying sediments. With the diffusion of heat, dissolved ions, and to some extent the advection of water itself, biogenic silica in the basal part of the sedimentary section is dissolved. Upon conductively cooling, these pore waters precipitate chert layers. The most common thickness for the basal silica-free zone (20 m) lies below the most common height of the top of the chert interval above basement (50 m). This mode of chert formation explains the frequent occurrence of chert layers at very shallow subbottom depths in pelagic sections of the Pacific. It is also consistent with the common occurrence of cherts =150 m above basement.
Resumo:
Oceanic basalts and other related igneous rocks are considered excellent recorders of the Earth's paleomagnetic field. Consequently, basalt core paleomagnetic data are valuable for the constraints they provide on plate tectonic motions, especially for oceanic plates such as the Pacific. Unfortunately, few Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) boreholes have been cored very deeply into the ocean crust. The result is that there are only a few sites at which a large enough number of basalt flows have been cored to properly average secular variation (e.g., Kono, 1980, doi:10.2973/dsdp.proc.55.135.1980; Cox and Gordon, 1984, doi:10.1029/RG022i001p00047). Furthermore, there are a number of sites where basaltic core samples were retrieved but the cores were not measured. Often this occurs because leg scientists had more important sections to work on, or the section was ignored because it was too short to record enough time to average secular variation and obtain a reliable paleolatitude. Even though it may not be possible to determine a precise paleolatitude from such short sections, measurements from a small number of flows are important because they can be combined with other coeval paleomagnetic data from the same plate to calculate a paleomagnetic pole (Gordon and Cox, 1980, doi:10.1111/j.1365-246X.1980.tb02642.x; Cox and Gordon, 1984, doi:10.1029/RG022i001p00047). For this reason, I obtained samples for paleomagnetic measurements from eight Pacific sites (169, 170, 171, 581, 597, 800, 803, and 865), most of which have not been previously measured for paleomagnetism.
Resumo:
I have compiled CaCO3 mass accumulation rates (MARs) for the period 0-25 Ma for 144 Deep Sea Drilling Project and Ocean Drilling Program drill sites in the Pacific in order to investigate the history of CaCO3 burial in the world's largest ocean basin. This is the first synthesis of data since the beginning of the Ocean Drilling Program. Sedimentation rates, CaCO3 contents, and bulk density were estimated for 0.5 Myr time intervals from 0 to 14 Ma and for 1 Myr time intervals from 14 to 25 Ma using mostly data from Initial Reports volumes. There is surprisingly little coherence between CaCO3 MAR time series from different Pacific regions, although regional patterns exist. A transition from high to low CaCO3 MAR from 23-20 Ma is the only event common to the entire Pacific Ocean. This event is found worldwide. The most likely cause of lowered pelagic carbonate burial is a rising sea-level trend in the early Miocene. The central and eastern equatorial Pacific is the only region with adequate drill site coverage to study carbonate compensation depth (CCD) changes in detail for the entire Neogene. The latitude-dependent decrease in CaCO3 production away from the equator is an important defining factor of the regional CCD, which shallows away from the equatorial region. Examination of latitudinal transects across the equatorial region is a useful way to separate the effects of changes in carbonate production ('productivity') from changes in bottom water chemistry ('dissolution') upon carbonate burial.
Resumo:
On the basis of their respective eruptive environments and chemical characteristics, alkalic dolerite sills from the northern Pigafetta Basin (Site 800) and tholeiitic pillow lavas from the Mariana Basin (Site 802) sampled during Ocean Drilling Program Leg 129 are considered to represent examples of the widespread mid-Cretaceous volcanic event in the western Pacific. Both groups of basic rocks feature mild, low-grade, anoxic smectite-celadonite-carbonate-pyrite alteration; late-stage oxidation is very limited in extent, with the exception of the uppermost sill unit at Site 800. The aphyric and nonvesicular Site 800 alkalic dolerite sills are all well-evolved mineralogically and chemically, being mainly of hawaiite composition, and are similar to ocean island basalts. They are characterized by high contents of incompatible elements (for example, 300-400 ppm Zr), well-fractionated rare earth element patterns ([La/Yb]N 18-21) and HIMU isotopic characters. They probably represent deep-sea, lateral, intrusive off-shoots from nearby seamounts of similar age. The olivine-plagioclase +/- clinopyroxene phyric tholeiitic pillow lavas and thin flows of Site 802 are nonvesicular and quench-textured throughout. Relative to normal-type mid-ocean ridge basalt, they are enriched in large-ion-lithophile elements, exhibit flat (unfractionated) rare earth element patterns and have distinctive (lower) Zr/Nb, Zr/Ta, La/Ta, and Hf/Th ratios. Overall they are compositionally and isotopically similar to the mid-Cretaceous tholeiites of the Nauru basin and the Ontong-Java and Manihiki plateaus. The Site 802 tholeiites differ from the thickened crustal segments of the oceanic plateaus, however, in apparently representing only a thin veneer over the local basement in an off-axis environment.
Resumo:
Basaltic rocks recovered from three drill sites in the western Pacific during Ocean Drilling Program Leg 129 have fairly distinct Sr, Nd, and Pb isotopic compositions. The Cretaceous alkali olivine dolerites from Site 800 in the northern part of Pigafetta Basin have fairly low 87Sr/86Sri (0.70292-0.70320) and 143Nd/144Ndi (0.51277-0.51281) and high present-day Pb isotopic ratios (206Pb/204Pb = 20.53-21.45; 207Pb/204Pb = 15.70-15.77; 208Pb/204Pb = 40.02-40.68). The Middle Jurassic tholeiites from Site 801 in the southern part of the basin have low 87Sr/86Sri (0.70237-0.70248), high 143Nd/144Ndi (0.51298-0.51322), and moderate present-day Pb isotopic ratios (206Pb/204Pb = 18.20-19.12; 207Pb/204Pb = 15.47-15.60; 208Pb/204Pb = 37.56-38.18); isotopic compositions of the alkali olivine basalts overlying the tholeiites fall between those of the tholeiites and Site 800 dolerites. The Cretaceous tholeiites from Site 802 in the East Mariana Basin have high 87Sr/86Sri (0.70360-0.70372), fairly low 143Nd/144Ndi (0.51277-0.51280), and fairly low and homogeneous present-day Pb isotopic ratios (206Pb/204Pb = 18.37-18.39; 207Pb/204Pb = 15.49-15.51; 208Pb/204Pb = 38.34-38.39). Isotopic compositions of Site 801 tholeiites are indistinguishable from those of modern mid-ocean ridge basalts, consistent with the proposal that these tholeiites are a part of the oldest Pacific crust. The diverse isotopic compositions of the younger basalts appear to be the result of Jurassic Pacific plate migration over the geologically anomalous south-central Pacific region, wherein they acquired their distinct isotopic compositions. The anomalous region was volcanically more active during the Cretaceous than at present.
Resumo:
Four models of fission track annealing in apatite are compared with measured fission track lengths in samples from Site 800 in the East Mariana Basin, Ocean Drilling Program Leg 129, given an independently determined temperature history. The temperature history of Site 800 was calculated using a one-dimensional, compactive, conductive heat flow model assuming two end-member thermal cases: one for cooling of Jurassic ocean crust that has experienced no subsequent heating, and one for cooling of Cretaceous ocean crust. Because the samples analyzed were only shallowly buried and because the tectonic history of the area since sample deposition is simple, resolution of the temperature history is high. The maximum temperature experienced by the sampled bed is between 16°-21°C and occurs at 96 Ma; temperatures since the Cretaceous have dropped in spite of continued pelagic sediment deposition because heat flow has continued to decay exponentially and bottom-water temperatures have dropped. Fission tracks observed within apatite grains from the sampled bed are 14.6 +/- 0.1 µm (1 sigma) long. Given the proposed temperature history of the samples, one unpublished and three published models of fission track annealing predict mean track lengths from 14.8 to 15.9 µm. These models require temperatures as much as 40°C higher than the calculated paleotemperature maximum of the sampled bed to produce the same degree of track annealing. Measured and predicted values are different because annealing models are based on extrapolation of high temperature laboratory data to geologic times. The model that makes the closest prediction is based on the greatest number of experiments performed at low temperature and on an apatite having composition closest to that of the core samples.
Resumo:
This report presents all the available major and trace elemental analyses and Sr, Nd, and Pb isotopic compositions of basaltic rocks recovered from Ocean Drilling Program Sites 800, 801, and 802 during Leg 129 (Table 1). Its main purpose is to provide other investigators a complete summary of geochemical data for Leg 129 basement basalts that they can use for later work. Detailed discussions of the data are presented elsewhere in the volume by Floyd and Castillo (Site 801 geochemistry and petrogenesis, dataset: doi:10.1594/PANGAEA.779154) Floyd et al. (Sites 800 and 802 geochemistry and petrography, dataset: doi:10.1594/PANGAEA.779129), Alt et al. (Site 801 alteration, dataset: doi:10.1594/PANGAEA.779207), and Castillo et al. (Sr, Nd, and Pb isotope geochemistry of Leg 129 basalts, dataset: doi:10.1594/PANGAEA.779191).