205 resultados para 1038-1

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrothermal circulation at oceanic spreading ridges causes sea water to penetrate to depths of 2 to 3 km in the oceanic crust where it is heated to ~400 °C before venting at spectacular 'black smokers'. These hydrothermal systems exert a strong influence on ocean chemistry (Edmond et al., 1979, doi:10.1016/0012-821X(79)90061-X), yet their structure, longevity and magnitude remain largely unresolved (Elderfield and Schultz., 1996, doi:10.1146/annurev.earth.24.1.191). The active Transatlantic Geotraverse (TAG) deposit, at 26° N on the Mid-Atlantic Ridge, is one of the largest, oldest and most intensively studied of the massive sulphide mounds that accumulate beneath black-smoker fields. Here we report ages of sulphides and anhydrites from the recently drilled (Humphris et al., 1995, doi:10.1038/377713a0) TAG substrate structures -determined from 234U-230Th systematics analysed by thermal ionization mass spectrometry. The new precise ages combined with existing data (Lalou et al., 1993, doi:10.1029/92JB01898; 1998, doi:10.2973/odp.proc.sr.158.214.1998) show that the oldest material (11,000 to 37,000 years old) forms a layer across the centre of the deposit with younger material (2,300-7,800 years old) both above and below. This stratigraphy confirms that much of the sulphide and anhydrite are precipitated within the mound by mixing of entrained sea water with hydrothermal fluid (James and Elderfield, 1996, doi:10.1130/0091-7613(1996)024<1147:COOFFA>2.3.CO;2). The age distribution is consistent with episodic activity of the hydrothermal system recurring at intervals of up to 2,000 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies of abyssal peridotites (Johnson et al., 1990, doi:10.1029/JB095iB03p02661), mid-ocean-ridge basalts (MORBs) (McKenzie, 1985, doi:10.1016/0012-821X(85)90001-9) and their entrained melt inclusions (Sobolev and Shimizu, 1993, doi:10.1038/363151a0; Humler and Whitechurch, 1988, doi:10.1016/0012-821X(88)90055-6) have shown that fractional melting of the upwelling sub-oceanic mantle produces magmas with a much wider range of compositions than erupted MORBs. In particular, it seems that strongly depleted primary magmas are routinely produced by melting beneath ridges (Johnson et al., 1990, doi:10.1029/JB095iB03p02661). The absence of strongly depleted melts as erupted lavas prompts the question of how long such magmas survive beneath ridges, before their distinctive compositions are concealed by mixing with more enriched magmas. Here we report mineral compositions from a unique suite of oceanic cumulates recovered from DSDP Site 334 (Aumento et al., doi:10.2973/dsdp.proc.37.1977), which indicate that the rocks crystallized from basaltic liquids that were strongly depleted in Na, Ti, Zr, Y, Sr and rare-earth elements relative to any erupted MORB. It thus appears that the magmatic plumbing system beneath the Mid-Atlantic Ridge permitted strongly depleted magmas to accumulate in a magma chamber and remain sufficiently isolated to produce cumulate rocks. Even so, spatial heterogeneity in the compositions of high-calcium pyroxenes suggests that in the later stages of solidification these rocks reacted with infiltrating enriched basaltic liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis that hotspots are the sources of many continental flood basalts is evaluated geochemically for the proposed Rajmahal Traps-Ninetyeast Ridge-Kerguelen hotspot system. It appears that the Kerguelen hotspot did not directly feed Rajmahal magmas, although it may have provided a source of heat for Rajmahal activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here oxygen and carbon isotopic records of Eocene to Oligocene benthic foraminifera from two Bay of Biscay Deep Sea Drilling Project (DSDP) sites (119 and 401). d18O of benthic foraminifera increases 1.9 per mil from a middle Eocene minimum (Zones P10-P11) to an earliest Oligocene maximum (Zone NP21). Approximately 1.4 per mil of the increase in benthic foraminiferal d18O occurs during the late Eocene to earliest Oligocene (Zones P15/16-NP21). Previous results from other North Atlantic DSDP sites (400A and 398) have significantly lower d18O values of benthic foraminifera, some by as much as 2 per mil (Vergnaud-Grazzini et al., 1978; 1989, doi:10.2973/dsdp.proc.48.119.1979; Vergnaud-Grazzini, 1979, doi:10.2973/dsdp.proc.47-2.117.1979 ). We believe that these differences result from diagenetic alteration of the sediments in the deeper-buried Sites 400A and 398.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Average vesicularity of basalt drilled at three sites on the west flank of the Reykjanes Ridge increases with decreasing age. This change apparently records concomitant decrease in water depth at the ridge crest where the basalt was erupted and suggests substantial upward growth of the crest during the past 35 Myr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pacific plate has undergone a substantial northward displacement during the late Mesozoic and the Cainozoic. Here we give additional documentation for such motion based on palaeomagnetic measurements of a sequence of sedimentary and basalt samples collected from middle Oligocene to Aptian sections of Deep Sea Drilling Project (DSDP) site 289 (Andrews, 1975; 00° 29.92'S, 158° 30.69'E) drilled on the Ontong Java Plateau.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin and development of the Phillipine Sea have been central issues in tectonic studies of a marginal sea: the deep-sea drilling project (DSDP), Leg 31, was primarily intended to resolve the question. Unfortunately, at only two of the Leg 31 sites (292 and 296) were microfossils indicating the age of the basement recovered, so the age of the ocean basin, had to be deduced by dating the drilled basement rocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central Hill is in the northern part of the Escanaba Trough, which is a sediment-filled rift of southern Gorda Ridge. Central Hill is oriented north-south and is associated with extensive sulfide deposits. Hydrothermal alteration of sediment from Site 1038 was studied through analyses of mineralogy and the chemistry and oxygen isotopic compositions of one nearly pure clay sample. In addition, Site 1037 was drilled to establish the character of the unaltered sedimentary sequence away from the hydrothermal centers of the Northern Escanaba Trough Study Area (NESCA). Mineralogy of the clay-size fraction of turbiditic and hemipelagic sediments of Hole 1037B are predominantly quartz, feldspar, pyroxene, illite, chlorite, and smectite, representing continental-derived material. Cores from Hole 1038I, located within the area of Central Hill but away from known active vent areas, recovered minor amounts of chlorite/smectite mixed-layer clay in the fine fraction, indicating a low-temperature hydrothermal alteration. The 137.4-m-thick sediment section of Hole 1038G is located in an area of low-temperature venting. The uppermost sample is classified as chlorite/smectite mixed layer, which is underlain by chlorite as the dominant mineral. The lowermost deposits of Hole 1038G are also characterized by chlorite/smectite mixed-layer clay. In comparison to Hole 1038I, the mineralogic sequence of Hole 1038G reflects increased chloritization. Intensely altered sediment is almost completely replaced by hydrothermal chlorite in subsurface sediments of Hole 1038H. Alteration to chlorite is characterized by depletion in Na, K, Ti, Ca, Sr, Cs, and Tl and enrichment in Ba. Further, Eu depletion reflects a high-temperature plagioclase alteration. A chlorite 18O value of 2.6 indicates formation at a temperature of ~190°C. It is concluded that the authigenic chlorite in Hole 1038H formed by an active high-temperature fluid flow in the shallow subsurface.