3 resultados para 100302 Bioprocessing Bioproduction and Bioproducts

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of 52 sediment cores, analyzed and dated at high resolution, the paleoceanography and climate of the Last Glacial Maximum (LGM) were reconstructed in detail for the Fram Strait and the eastern and central Arctic Ocean. Sediment composition and stable isotope data suggest three distinct paleoenvironments: (1) a productive region in the eastern to central Fram Strait and along the northern Barents Sea continental margin characterized by Atlantic Water advection, frequent open water conditions, and occasional local meltwater supply and iceberg calving from the Barents Sea Ice Sheet; (2) an intermediate region in the southwestern Eurasian Basin (up to 84-85°N) and the western Fram Strait characterized by subsurface Atlantic Water advection and recirculation, a moderately high planktic productivity, and a perennial ice cover that breaks up only occasionally; and (3) a central Arctic region (north of 85°N in the Eurasian Basin) characterized by a low-salinity surface water layer and a thick ice cover that strongly reduces bioproduction and bulk sedimentation rates. Although the total inflow of Atlantic Water into the Arctic Ocean may have been reduced during the LGM, its impact on ice coverage and halocline structure in the Fram Strait and southwestern Eurasian Basin was strong.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alkali phosphatase activity and hydrochemical structure of waters in the Barents and Norwegian seas were investigated. In a sea with the seasonal bioproduction cycle alkali phosphatase activity is also seasonal, rising with trophic level of waters. At the end of hydrological and biological winter activity is practically zero. Alkali phosphatase activity is especially important in summer, when plankton has consumed winter supply of phosphate in the euphotic layer and nutrient limitation of primary production begins. In summer production and destruction cycle, apparent time for recycling of phosphorus by phosphatase in suspended matter in the euphotic layer of the Barents Sea and Norwegian Sea averages from 7 to 30 hours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the framework of the Baikal Drilling Project (BDP), a 192 m long sediment core (BDP-96-1) was recovered from the Academician Ridge, a submerged topographic high between the North and Central Basins of Lake Baikal. Sedimentological, clay mineralogical and geochemical investigations were carried out on the core interval between 90 and 124 m depth, corresponding to ca. 2.4-3.4 Ma. The aim was to reconstruct the climatic and tectonic history of the continental region during the intensification of Northern Hemisphere glaciation in Late Pliocene time. A major climate change occurred in the Lake Baikal area at about 2.65 Ma. Enhanced physical weathering in the catchment, mirrored in the illite to smectite ratio, and temporarily reduced bioproduction in the lake, reflected by the diatom abundance, evidence a change towards a colder and more arid climate, probably associated with an intensification of the Siberian High. In addition, the coincident onset of distinct fluctuations in these parameters and in the Zr/Al ratio suggests the beginning of the Late Cenozoic high amplitude climate cycles at about 2.65 Ma. Fluctuations in the Zr/Al ratio are traced back to changes in the aeolian input, with high values in warmer, more humid phases due to a weaker Siberian High. Assuming that the sand content in the sediment reflects tectonic pulses, the Lake Baikal area was tectonically active during the entire investigated period, but in particular around 2.65 Ma. Tectonic movements have likely led to a gradual catchment change since about 3.15 Ma from the western towards the eastern lake surroundings, as indicated in the geochemistry and clay mineralogy of the sediments. The strong coincidence between tectonic and climatic changes in the Baikal area hints at the Himalayan uplift being one of the triggers for the Northern Hemisphere Glaciation.