732 resultados para 1, d18O-tied age mod
em Publishing Network for Geoscientific
Resumo:
Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic d11B. We suggest this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric d13C and D14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in d15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data, and suggest that the regional pulse of export production observed during the Bølling-Allerød is promoted by relatively stratified conditions, with increased light availability and a shallow, potent nutricline. Overall, our work highlights the potential of NPDW formation to play a significant and hitherto unrealized role in deglacial climate change and CO2 rise.
Resumo:
Bottom morphology of the Jan Mayen transform fracture zone and rock chemistry data show that petrological and chemical specific features of igneous rocks can result from higher permeability of the transform fracture zone and deeper penetration of ocean water into the lithosphere in comparison with rift zones of the Kolbeinsey and Mohn's mid-ocean ridges. Age of alkaline magmatism of the Jan Mayen fracture zone is similar to that of rift zones due to palingenesis of metamorphosed and hydrated mantle and crustal rocks.
Resumo:
Qualitative petrographic study of selected clastic horizons within the Eocene section of Hole 516F has revealed the presence of abundant fine-grained lithic fragments, probably volcanic, along with coarser fragments of quartz and feldspar apparently derived from a nearby plutonic terrain. In detail, poor sorting, presence of graded bedding, and an abundance of clay suggest these are turbidite horizons locally derived from a mixed volcanic/plutonic terrain, possibly with some direct contribution from contemporary volcanic ash falls. A progressive increase in plutonic versus volcanic components with time is, however, more consistent with an erosional origin for most of this material. Unusual euhedral dark biotite is abundant in several of the lower clastic horizons; it is most easily interpreted as microphenocrysts weathered in situ out of alkalic volcanic ash. Biotite separated from Sample 516F-76-4,107-115 cm, has been dated by the K-Ar method at about 46 Ma. Alkaline volcanoes active on the Rio Grande Rise in the middle Eocene would be the most probable source of this ash and would be consistent with other evidence for potassic, alkaline volcanism along the Rio Grande Rise and at the Tristan da Cunha hot spot.