6 resultados para 070105 Agricultural Systems Analysis and Modelling

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grain-size, terrigenous element and rock magnetic remanence data of Quaternary marine sediments retrieved at the NW African continental margin off Gambia (gravity core GeoB 13602-1, 13°32.71' N, 17°50.96'W) were jointly analyzed by end-member (EM) unmixing methods to distinguish and budget past terrigenous fluxes. We compare and cross-validate the identified single-parameter EM systems and develop a numerical strategy to calculate associated multi-parameter EM properties. One aeolian and two fluvial EMs were found. The aeolian EM is much coarser than the fluvial EMs and is associated with a lower goethite/hematite ratio, a higher relative concentration of magnetite and lower Al/Si and Fe/K ratios. Accumulation rates and grain sizes of the fluvial sediment appear to be primarily constrained by shore distance (i.e., sea-level fluctuations) and to a lesser extent by changes in hinterland precipitation. High dust fluxes occurred during the Last Glacial Maximum (LGM) and during Heinrich Stadials (HS) while the fluvial input remained unchanged. Our approach reveals that the LGM dust fluxes were ~7 times higher than today's. However, by far the highest dust accumulation occurred during HS 1 (~300 g m**-2 yr** -1), when dust fluxes were ~80 fold higher than today. Such numbers have not yet been reported for NW Africa, and emphasize strikingly different environmental conditions during HSs. They suggest that deflation rate and areal extent of HSs dust sources were much larger due to retreating vegetation covers. Beyond its regional and temporal scope, this study develops new, in principle, generally applicable strategies for multi-method end-member interpretation, validation and flux budgeting calibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assemblages of organic-walled dinoflagellate cysts (dinocysts) from 116 marine surface samples have been analysed to assess the relationship between the spatial distribution of dinocysts and modern local environmental conditions [e.g. sea surface temperature (SST), sea surface salinity (SSS), productivity] in the eastern Indian Ocean. Results from the percentage analysis and statistical methods such as multivariate ordination analysis and end-member modelling, indicate the existence of three distinct environmental and oceanographic regions in the study area. Region 1 is located in western and eastern Indonesia and controlled by high SSTs and a low nutrient content of the surface waters. The Indonesian Throughflow (ITF) region (Region 2) is dominated by heterotrophic dinocyst species reflecting the region's high productivity. Region 3 is encompassing the area offshore north-west and west Australia which is characterised by the water masses of the Leeuwin Current, a saline and nutrient depleted southward current featuring energetic eddies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluid circulation in peridotite-hosted hydrothermal systems influences the incorporation of carbon into the oceanic crust and its long-term storage. At low to moderate temperatures, serpentinization of peridotite produces alkaline fluids that are rich in CH4 and H2. Upon mixing with seawater, these fluids precipitate carbonate, forming an extensive network of calcite veins in the basement rocks, while H2 and CH4 serve as an energy source for microorganisms. Here, we analyzed the carbon geochemistry of two ancient peridotite-hosted hydrothermal systems: 1) ophiolites cropping out in the Northern Apennines, and 2) calcite-veined serpentinites from the Iberian Margin (Ocean Drilling Program (ODP) Legs 149 and 173), and compare them to active peridotite-hosted hydrothermal systems such as the Lost City hydrothermal field (LCHF) on the Atlantis Massif near the Mid-Atlantic Ridge (MAR). Our results show that large amounts of carbonate are formed during serpentinization of mantle rocks exposed on the seafloor (up to 9.6 wt.% C in ophicalcites) and that carbon incorporation decreases with depth. In the Northern Apennine serpentinites, serpentinization temperatures decrease from 240 °C to < 150 °C, while carbonates are formed at temperatures decreasing from ~ 150 °C to < 50 °C. At the Iberian Margin both carbonate formation and serpentinization temperatures are lower than in the Northern Apennines with serpentinization starting at ~ 150 °C, followed by clay alteration at < 100 °C and carbonate formation at < 19-44 °C. Comparison with various active peridotite-hosted hydrothermal systems on the MAR shows that the serpentinites from the Northern Apennines record a thermal evolution similar to that of the basement of the LCHF and that tectonic activity on the Jurassic seafloor, comparable to the present-day processes leading to oceanic core complexes, probably led to formation of fractures and faults, which promoted fluid circulation to greater depth and cooling of the mantle rocks. Thus, our study provides further evidence that the Northern Apennine serpentinites host a paleo-stockwork of a hydrothermal system similar to the basement of the LCHF. Furthermore, we argue that the extent of carbonate uptake is mainly controlled by the presence of fluid pathways. Low serpentinization temperatures promote microbial activity, which leads to enhanced biomass formation and the storage of organic carbon. Organic carbon becomes dominant with increasing depth and is the principal carbon phase at more than 50-100 m depth of the serpentinite basement at the Iberian Margin. We estimate that annually 1.1 to 2.7 × 1012 g C is stored within peridotites exposed to seawater, of which 30-40% is fixed within the uppermost 20-50 m mainly as carbonate. Additionally, we conclude that alteration of oceanic lithosphere is an important factor in the long-term global carbon cycle, having the potential to store carbon for millions of years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a well-established stratigraphic framework and 47 AMS-14C dated sediment cores, the distribution of facies types on the NW Iberian margin is analysed in response to the last deglacial sea-level rise, thus providing a case study on the sedimentary evolution of a high-energy, low-accumulation shelf system. Altogether, four main types of sedimentary facies are defined. (1) A gravel-dominated facies occurs mostly as time-transgressive ravinement beds, which initially developed as shoreface and storm deposits in shallow waters on the outer shelf during the last sea-level lowstand; (2) A widespread, time-transgressive mixed siliceous/biogenic-carbonaceous sand facies indicates areas of moderate hydrodynamic regimes, high contribution of reworked shelf material, and fluvial supply to the shelf; (3) A glaucony-containing sand facies in a stationary position on the outer shelf formed mostly during the last-glacial sea-level rise by reworking of older deposits as well as authigenic mineral formation; and (4) A mud facies is mostly restricted to confined Holocene fine-grained depocentres, which are located in mid-shelf position. The observed spatial and temporal distribution of these facies types on the high-energy, low-accumulation NW Iberian shelf was essentially controlled by the local interplay of sediment supply, shelf morphology, and strength of the hydrodynamic system. These patterns are in contrast to high-accumulation systems where extensive sediment supply is the dominant factor on the facies distribution. This study emphasises the importance of large-scale erosion and material recycling on the sedimentary buildup during the deglacial drowning of the shelf. The presence of a homogenous and up to 15-m thick transgressive cover above a lag horizon contradicts the common assumption of sparse and laterally confined sediment accumulation on high-energy shelf systems during deglacial sea-level rise. In contrast to this extensive sand cover, laterally very confined and maximal 4-m thin mud depocentres developed during the Holocene sea-level highstand. This restricted formation of fine-grained depocentres was related to the combination of: (1) frequently occurring high-energy hydrodynamic conditions; (2) low overall terrigenous input by the adjacent rivers; and (3) the large distance of the Galicia Mud Belt to its main sediment supplier.