124 resultados para ss 47 and 48


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the climate dynamics of hypothesized past greenhouse intervals, it is essential to constrain tropical sea-surface temperatures (SST), yet existing proxy records give conflicting results. Here we present the first Mg/Ca-based study of pre-Quaternary SST and investigate early Paleogene (late Paleocene through late middle Eocene; 58.6-39.8 Ma) tropical temperatures, using planktonic foraminifera belonging to the genus Morozovella from Ocean Drilling Program Site 865 on Allison Guyot (western central equatorial Pacific Ocean). Calcification temperatures similar to or warmer than modern tropical SST are calculated using a range of assumptions regarding diagenesis, temperature calibration, and seawater Mg/Ca. Long-term warming is observed into the early Eocene (54.8-49.0 Ma), with peak SST between 51 and 48 Ma and rapid cooling of 4°C beginning at 48 Ma. These findings are inconsistent with the d18O-based SST previously estimated for this site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermogenic hydrocarbons, formed by the thermal alteration of organic matter, are encountered in several piston core stations in the King George Basin, Anatarctica. These hemipelagic sediments are being deposited in an area of active hydrothermalism, associated with the back-arc spreading in the Bransfield Strait. The lateral extent of sediments infiltrated by the hydrothermally influenced interstitial fluids is characterized by basalt diapiric intrusions and is delineated by an acoustically turbid zone in the sediments of the eastern part of the basin. Iron-sulphide-bearing veins and fractures cut across the sediment in several cores; they appear to be conduits for flow of hydrothermally altered fluids. These zones have the highest C2+ and ethene contents. The thermogenic hydrocarbons have molecular C1/(C2 + C3) ratios typically < 50 and delta13CH4 values between -38? and -48?, indicating an organic source which has undergone strong thermal stress. Several sediment cores also have mixed gas signatures, which indicate the presence of substantial amounts of bacterial gas, predominantly methane. Hydrocarbon generation in the King George Basin is thought to be a local phenomenon, resulting from submarine volcanism with temperatures in the range 70-150°C. There are no apparent seepages of hydrocarbons into the water column, and it is not believed that significant accumulation of thermogenic hydrocarbons reside in the basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present data set is a worldwide compilation from 11 oceanographic expeditions during which an underwater vision profiler (UVP) was deployed in situ to determine the vertical distribution (biomass) of 4 taxonomic groups of plankton larger than 600 µm, belonging to the Infrakingdom Rhizaria, including Collodaria, Acantharia, Phaeodaria and other Rhizaria. Vertical distributions are binned in four layers: 0-100, 0-200, 100-500 and 0-500 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mega-epibenthic diversity was analysed using a seabed photography at four stations off Bouvet Island and one station at the Spiess Seamount in the South Atlantic. Surprisingly, the intermediate-scale diversity within the area of investigation was not lower compared to that on the Patagonian shelf and only moderately lower than that on the Antarctic continental shelf. This result is incompatible with Mac Arthur and Wilson's Island Biogeography Theory describing species richness as a function of immigration of new species into an area and its extension. The relatively high species number and the very small extension of the Bouvet shelf compared to the much larger continental shelves of the other two areas can be explained by long-range dispersal of marine benthic animals in the Antarctic Circumpolar Current and high habitat heterogeneity. The observed uncoupling of intermediate-scale from large-scale background species diversity on the Antarctic shelf raises the question whether in these benthic systems an upper capacity limit for diversity exists.