175 resultados para shells of Calyptogena sp.
Resumo:
Recent work has provided useful Mg/Ca to water temperature calibrations for shallow-dwelling planktonic foraminifer species. Globorotalia truncatulinoides (right coiling (R)) is a deep-dwelling species that can serve as a source of information about the temporal variability in the water characteristics of the thermocline. We present a temperature calibration for the Mg/Ca in the shell of G. truncatulinoides (R) and examine some of the practical issues associated with evaluating the usefulness of the technique. The Mg/Ca in the primary and the secondary calcite of individual G. truncatulinoides (R) correlates exponentially with water column temperatures, showing a change of ~10% in the Mg/Ca per 1°C (R**2 = 0.92). A limited comparison with plankton tow samples demonstrates that the average Mg/Ca temperature was offset +1°C from the average temperature calculated using the d18O calibration of O'Neil et al. (1969, doi:10.1063/1.1671982), and the Mg/Ca temperatures have a range similar to the ?18O temperatures. Comparisons of the [Mg] in the core top samples to water depth of deposition indicates that dissolution does not alter the measured value of Mg in the primary calcite.
Resumo:
Within generally calcareous sediment sequences, layers of variable thickness of the giant diatom Ethmodiscus were found in five cores recovered in the Subtropical South Atlantic between 23° and 33°S from both sides of the Mid-Atlantic Ridge. Two types of oozes occur: (almost) monospecific layers of Ethmodiscus and layers dominated by Ethmodiscus, with several accompanying tropical/subtropical, oligotrophic-water diatoms. The two thickest Ethmodiscus layers occur in GeoB3801-6 around 29°S, and accumulated during late MIS 14 and MIS 12, respectively. Downcore concentrations of Ethmodiscus valves range between 3.4 10 4 and 2.3 10 7 valves g -1. We discuss the ooze formation in the context of migration of frontal systems and changes in the thermohaline circulation. The occurrence of Ethmodiscus oozes in sediments underlying the present-day pelagic, low-nutrient waters is associated with a terminal event of the Mid-Pleistocene Transition at around 530 ka, when the ocean circulation rearranged after a period of reduced NADW production.
Resumo:
The genus Calyptogena (Bivalvia: Vesicomyidae) comprises highly specialized bivalves living in symbiosis with sulphur-oxidizing bacteria in reducing habitats. In this study, the genus is revised using shell and anatomical features. The work is based on type material, as well as on the extensive collection of vesicomyids obtained during twelve expeditions to the Pacific and Indian Oceans. Nine Recent species are ascribed to the genus Calyptogena, four of which are new: C. pacifica Dall, 1891, C. fausta Okutani, Fujikura & Hashimoto, 1993, C. rectimargo Scarlato, 1981, C. valdiviae (Thiele & Jaeckel, 1931), C. gallardoi Sellanes & Krylova, 2005, C. goffrediae n. sp., C. starobogatovi n. sp., C. makranensis n. sp. and C. costaricana n. sp. The characteristic features of Calyptogena are: shell up to 90 mm in length, elongate-elliptical or elongate; presence of escutcheon; presence of broad posterior ramus (3b) of right subumbonal cardinal tooth as well as right posterior nymphal ridge; absence of pallial sinus as a result of attachment of intersiphonal septal retractor immediately adjacent to ventral surface of posterior adductor; absence of processes on inner vulva of inhalant siphon; presence of inner demibranch only, with descending and ascending lamellae with interlamellar septa not divided into separate tubes. The most closely related taxa to Calyptogena are probably the genus Isorropodon Sturany, 1896, and the group of species represented by 'Calyptogena' phaseoliformis Métivier, Okutani & Ohta, 1986. These groups have several characters in common, namely absence of pallial sinus, presence of single inner pair of demibranchs and absence of processes on inner vulva of inhalant siphon. The worldwide distribution of the genus Calyptogena suggests that methane seeps at continental margins are the major dispersal routes and that speciation was promoted by geographical isolation. Recent species diversity and fossil records indicate that the genus originated in the Pacific Ocean. Sufficient data to discuss the distribution at species level exist only for C. pacifica, which has a remarkably narrow bathymetric range. Published studies on the physiology of C. pacifica suggest that adaptation to a specific geochemical environment has led to coexisting vesicomyid genera. The bacteria-containing gill of C. pacifica and other Calyptogena species is one of the most specialized in the family Vesicomyidae and may reflect these ecological adaptations.
Resumo:
A Mediterranean composite sedimentary record was analyzed for Ba/Ca ratios on carbonate shells of Orbulina universa planktonic foraminifer (Ba/Ca)carb providing the opportunity to study and assess the extent of freshwater inputs on the basin and possible impacts on its dynamics during the Tortonian to Recent period. A number of scanning electron microscope analyses and auxiliary trace element measurements (Mn, Sr, and Mg), obtained from the same samples, exclude important diagenetic effects on the studied biogenic carbonates and corroborate the reliability of (Ba/Ca)carb ratios in foraminifera calcite as indicators of seawater source components during the studied interval. A long-term trend with (Ba/Ca)carb values shifting from ~7 to 3 µmol/mol from the base of the Tortonian to the top of the Messinian is observed. The interval of the late Messinian salinity crisis, where biogenic carbonates are missing or strongly diagenized, represents a crucial passage not monitored in our record. At the base of the Pliocene, up to about 4.7 Ma, the (Ba/Ca)carb record shows a decreasing trend from ~4 µmol/mol stabilizing itself to an about constant value of 0.9 ± 0.3 µmol/mol for the whole Plio-Pleistocene interval. These results suggest a dramatic change in the continental runoff values, up to ~3-16 times higher during part of the late Neogene (Tortonian-early Pliocene), with a possible profound modification in the physical dynamics of the Mediterranean basin. First-order mass balance equations used to estimate barium and salinity budgets in the Mediterranean Sea during the late Miocene-early Pliocene interval support the hypothesis of an active connection of the basin with the Paratethys region and of a definitive restriction at the base of the Pliocene after about 0.7 Ma from the well-known Messinian Lagomare phase. They also open intriguing scenarios on possible circulation shifts during the Neogene.