134 resultados para serpentinite
Resumo:
Petrographic and stable-isotope (d13C, d18O) patterns of carbonates from the Logatchev Hydrothermal Field (LHF), the Gakkel Ridge (GR), and a Late Devonian outcrop from the Frankenwald (Germany) were compared in an attempt to understand the genesis of carbonate minerals in marine volcanic rocks. Specifically, were the carbonate samples from modern sea floor settings and the Devonian analog of hydrothermal origin, low-temperature abiogenic origin (as inferred for aragonite in serpentinites from elsewhere on the Mid-Atlantic Ridge), or biogenic origin? Aragonite is the most abundant carbonate mineral in serpentinites from the two modern spreading ridges and occurs within massive sulfides of the LHF. The precipitation and preservation of aragonite suggests high Mg2+ and sulfate concentrations in fluids. Values of d18OPDB as high as +5.3 per mill for serpentinite-hosted aragonite and as high as +4.2 per mill for sulfide-hosted aragonite are consistent with precipitation from cold seawater. Most of the corresponding d13C values indicate a marine carbon source, whereas d13C values for sulfide-hosted aragonite as high as +3.6 per mill may reflect residual carbon dioxide in the zone of methanogenesis. Calcite veins from the LHF, by contrast, have low d18OPDB (-20.0 per mill to -16.1 per mill) and d13C values (-5.8 per mill to -4.5 per mill), indicative of precipitation from hydrothermal solutions (~129°-186°C) dominated by magmatic CO2. Calcite formation was probably favored by fluid rock interactions at elevated temperatures, which tend to remove solutes that inhibit calcite precipitation in seawater (Mg2+ and sulfate). Devonian Frankenwald calcites show low d18O values, reflecting diagenetic and metamorphic overprinting. Values of d13C around 0 per mill for basalt-hosted calcite indicate seawater-derived inorganic carbon, whereas d13C values for serpentinite-hosted calcite agree with mantle-derived CO2 (for values as low as -6 per mill) with a contribution of amagmatic carbon (for values as low as -8.6 per mill), presumably methane. Secondary mineral phases from the LHF for which a biogenic origin appears feasible include dolomite dumbbells, clotted carbonate, and a network of iron- and silica-rich filaments.
Resumo:
The monograph summarizes geological and metallogenic data on the Mid-Atlantic Ridge obtained during research expeditions of the Geological Institute RAS in 2000-2003. Formation of the earth crust in the region, structure of the rift zone, structure of the newly discovered Bogdanov Fracture Zone, neotectonic deformations, metallogenic peculiarities, prospecting criteria of ocean ore mineralization are under consideration.
Resumo:
Low temperature alteration of oceanic basement rocks is characterized by net gain of sulfur, which commonly yields low d34S values, suggesting involvement of microbial sulfate reduction. In order to test whether secondary sulfide minerals are consistent with a biogenic source, we apply high precision multiple sulfur isotope analysis to bulk rock sulfide and pyrite isolates from two contrasting types of altered oceanic basement rocks, namely serpentinized peridotites and altered basalts. Samples from two peridotite sites (Iberian Margin and Hess Deep) and from a basalt site on the eastern flank of the Juan de Fuca Ridge yield overlapping d34S values ranging from 0 per mil to -44 per mil. In contrast, sulfides in the basalt site are characterized by relatively low D33S values ranging from -0.06 per mil to 0.04 per mil, compared to those from peridotite sites (0.00 per mil to 0.16 per mil). The observed D33S signal is significant considering the analytical precision of 0.014 per mil (2 sigma). We present a batch reaction model that uses observed d34S and D33S relationships to quantify the effect of closed system processes and constrain the isotope enrichment factor intrinsic to sulfate reduction. The estimated enrichment factors as large as 61 per mil and 53 per mil, for peridotite and basalt sites respectively, suggest the involvement of microbial sulfate reduction. The relatively high D33S values in the peridotite sites are due to sulfate reduction in a closed system environment, whereas negative D33S values in the basalt site reflect open system sulfate reduction. A larger extent of sulfate reduction during alteration of peridotite to serpentinite is consistent with its higher H2 production capacity compared to basalt alteration, and further supports in-situ microbial sulfate reduction coupled with H2 production during serpentinization reactions.
Resumo:
Serpentinized abyssal peridotites sampled by the Ocean Drilling Program Leg 209 along the mid-Atlantic Ridge near the 15°20'N Fracture Zone have been analyzed for oxygen, hydrogen, and chlorine isotope compositions in order to determine isotopic behavior under a wide range of serpentinization conditions and place constraints on fluid history. Oxygen and hydrogen thermometry suggests peak serpentinization temperatures of 300-500°C. Serpentine separates have low deltaD values possibly due to a magmatic fluid component or low-temperature exchange during seafloor weathering. Chlorine geochemistry focused on three holes: 1274A and 1272A (serpentinized peridotites) and 1268A (serpentinite locally altered to talc). Concentrations of both, water-soluble chloride (WSC) and structurally bound chloride (SBC) are significantly lower at Hole 1268A compared to Holes 1274A and 1272A. The delta37Cl values for WSC and SBC of serpentinites in Holes 1274A and 1272A are slightly positive (avg. WSC = 0.20 per mil, n = 22 and avg. SBC = 0.35 per mil, n = 22), representing typical seawater-hydration conditions commonly determined for abyssal peridotite. The SBC of serpentinites from Hole 1268A are also positive (avg. = 0.63 per mil); whereas, the SBC in talc-dominated samples is negative (avg. = -1.22 per mil). The WSC of both talc- and serpentine-dominated samples are also negative (avg. = -0.15 per mil). We interpret the chlorine isotope data to preserve a record of multiple fluid events. As seawater hydrated the peridotite, 37Cl was preferentially incorporated into the forming serpentine and water-soluble salts, yielding similar delta37Cl values on a regional scale as sampled by Holes 1268A, 1274A and 1272A. The resultant pore fluid was left depleted in 37Cl. Locally (Hole 1268A), this evolved fluid was remobilized possibly due to the initiation of hydrothermal circulation in response to emplacement of a mafic magma body. The low delta37Cl pore fluids attained elevated SiO2 and sulfur concentrations due to interaction with the gabbroic intrusion and, when ascending through the surrounding serpentinite, caused formation of isotopically negative talc. This secondary fluid also flushed the preserved serpentinite of its previously formed salts, resulting in negative delta37Cl WSC values. The delta37Cl SBC values of the serpentinite samples remained unmodified by reaction with the secondary fluid.
Resumo:
Modal analysis of middle Miocene to Pleistocene volcaniclastic sands and sandstones recovered from Sites 1108, 1109, 1118, 1112, 1115, 1116, and 1114 within the Woodlark Basin during Leg 180 of the Ocean Drilling Program indicates a complex source history for sand-sized detritus deposited within the basin. Volcaniclastic detritus (i.e., feldspar, ferromagnesian minerals, and volcanic rock fragments) varies substantially throughout the Woodlark Basin. Miocene sandstones of the inferred Trobriand forearc succession contain mafic and subordinate silicic volcanic grains, probably derived from the contemporary Trobriand arc. During the late Miocene, the Trobriand outerarc/forearc (including Paleogene ophiolitic rocks) was subaerially exposed and eroded, yielding sandstones of dominantly mafic composition. Rift-related extension during the late Miocene-late Pliocene led to a transition from terrestrial to neritic and finally bathyal deposition. The sandstones deposited during this period are composed dominantly of silicic volcanic detritus, probably derived from the Amphlett Islands and surrounding areas where volcanic rocks of Pliocene-Pleistocene age occur. During this time terrigenous and metamorphic detritus derived from the Papua New Guinea mainland reached the single turbiditic Woodlark rift basin (or several subbasins) as fine-grained sediments. At Sites 1108, 1109, 1118, 1116, and 1114, serpentinite and metamorphic grains (schist and gneiss) appear as detritus in sandstones younger than ~3 Ma. This is thought to reflect a major pulse of rifting that resulted in the deepening of the Woodlark rift basin and the prevention of terrigenous and metamorphic detritus from reaching the northern rift margin (Site 1115). The Paleogene Papuan ophiolite belt and the Owen Stanley metamorphics were unroofed as the southern margin of the rift was exhumed (e.g., Moresby Seamount) and, in places, subaerially exposed (e.g., D'Entrecasteaux Islands and onshore Cape Vogel Basin), resulting in new and more proximal sources of metamorphic, igneous, and ophiolitic detritus. Continued emergence of the Moresby Seamount during the late Pliocene-early Pleistocene bounded by a major inclined fault scarp yielded talus deposits of similar composition to the above sandstones. Upper Pliocene-Pleistocene sandstones were deposited at bathyal depths by turbidity currents and as subordinate air-fall ash. Silicic glassy (high-K calc-alkaline) volcanic fragments, probably derived from volcanic centers located in Dawson and Moresby Straits, dominated these sandstones.
Resumo:
The high-pressure, low-temperature metamorphic rocks known as blueschists have long been considered to form in subduction zones, where the descent of a relatively cold slab leads to the occurrence of unusually low temperatures at mantle pressures. Until now, however, the link between blueschist-facies rocks and subduction zones has been indirect, relying on a spatial association of blueschists with old subduction complexes, and estimates of the geothermal gradients likely to exist in subduction zones. Here we strengthen this link, by reporting the discovery of blueschist-facies minerals (lawsonite, aragonite, sodic pyroxene and blue amphibole) in clasts from a serpentinite seamount in the forearc of the active Mariana subduction zone. The metamorphic conditions estimated from the mineral compositions are 150-250 °C and 5-6 kbar (16-20 km depth). The rocks must have been entrained in rising serpentine mud diapirs, and extruded from mud volcanoes onto the sea floor. Further study of these rocks may provide new insight into the tectonics of trench-forearc systems, and in particular, the processes by which blueschist-facies clasts come to be associated with forearc sediments in ancient subduction complexes.
Resumo:
Based on a well-established stratigraphic framework and 47 AMS-14C dated sediment cores, the distribution of facies types on the NW Iberian margin is analysed in response to the last deglacial sea-level rise, thus providing a case study on the sedimentary evolution of a high-energy, low-accumulation shelf system. Altogether, four main types of sedimentary facies are defined. (1) A gravel-dominated facies occurs mostly as time-transgressive ravinement beds, which initially developed as shoreface and storm deposits in shallow waters on the outer shelf during the last sea-level lowstand; (2) A widespread, time-transgressive mixed siliceous/biogenic-carbonaceous sand facies indicates areas of moderate hydrodynamic regimes, high contribution of reworked shelf material, and fluvial supply to the shelf; (3) A glaucony-containing sand facies in a stationary position on the outer shelf formed mostly during the last-glacial sea-level rise by reworking of older deposits as well as authigenic mineral formation; and (4) A mud facies is mostly restricted to confined Holocene fine-grained depocentres, which are located in mid-shelf position. The observed spatial and temporal distribution of these facies types on the high-energy, low-accumulation NW Iberian shelf was essentially controlled by the local interplay of sediment supply, shelf morphology, and strength of the hydrodynamic system. These patterns are in contrast to high-accumulation systems where extensive sediment supply is the dominant factor on the facies distribution. This study emphasises the importance of large-scale erosion and material recycling on the sedimentary buildup during the deglacial drowning of the shelf. The presence of a homogenous and up to 15-m thick transgressive cover above a lag horizon contradicts the common assumption of sparse and laterally confined sediment accumulation on high-energy shelf systems during deglacial sea-level rise. In contrast to this extensive sand cover, laterally very confined and maximal 4-m thin mud depocentres developed during the Holocene sea-level highstand. This restricted formation of fine-grained depocentres was related to the combination of: (1) frequently occurring high-energy hydrodynamic conditions; (2) low overall terrigenous input by the adjacent rivers; and (3) the large distance of the Galicia Mud Belt to its main sediment supplier.
Resumo:
On DSDP Leg 84, drilling was conducted at three gas-hydrate-bearing sites on the Middle America Trench slope off Costa Rica (Site 565) and off Guatemala (Sites 568 and 570). At Site 569, on the mid-slope off Guatemala, hydrates may be present, according to the seismic profile (GUA-13), although the pore-water composition does not provide clear evidence. Sites 566 and 567, on the lower Guatemala Trench slope, appear to be free of hydrates, except in fractures of serpentinite at the bottom of Hole 566. Hydrate-bearing Sites 565, 568, and 570 show the effects of hydrate decomposition on pore-water chemistry that have been established during previous drilling at Sites 496 and 497 on the Guatemala Trench slope. These include a chlorinity decrease and d18O increase downsection. The new results, however, reveal more complex relationships between the chlorinity decrease and d18O increase than previously recognized. At Site 565, d18O values decrease in the middle section of the hole, whereas chlorinity continues to decrease from the top to near the bottom of the hole. Early diagenetic alteration of volcanic glass is suggested as a mechanism for the unexpected minimum in the O-isotope curve. Multiple fractionation by the pore-water/hydrate system is required to explain d18O-values greater than 2.7 per mil at the bottom of Hole 568, because with a fractionation factor of alpha = 1.0027, this is the maximum figure a single-stage fractionation could produce. In situ water samples from hydrate zones in most cases failed to display the elevated salinities expected for the residual pore waters not involved in hydrate formation. This is probably because the in situ sampling device still allows a systematic pressure drop sufficient to trigger hydrate decomposition in the immediate vicinity of the sample port.
Resumo:
d37Cl values were determined for Izu Bonin arc magmas erupted 0-44 Ma in order to better understand the time-dependent processing of volatiles in subduction zones. Pristine ash-sized particles (glass, pumice, scoria, and rock fragments) were handpicked from tephra drilled at ODP Site 782. d37Cl values for these particles span a large range from -2.1 to +1.7 per mil (error = ± 0.3 per mil) vs. SMOC (Standard Mean Ocean Chloride, defined as 0 per mil). The temporal data extend the previously reported range of d37Cl values of -2.6 to 0.4 per mil (bulk ash) and -5.4 to -0.1 per mil (volcanic gases) from the Quaternary Izu Bonin-Mariana volcanic front to more positive values. Overall, the temporal data indicate a time-progressive evolution, from isotopically negative Eocene and Oligocene magmas (-0.7 ± 1.1 per mil, n = 10) to Neogene magmas that have higher ?37Cl values on average (+0.3 ± 1.1 per mil; n = 13). The increase is due to the emergence of positive d37Cl values in the Neogene, while minimum d37Cl values are similar through time. The range in d37Cl values cannot be attributed to fractionation during melt formation and differentiation, and must reflect the diversity of Cl present in the arc magma sources. Cl clearly derives from the slab (> 96% Cl in arc magmas), but d37Cl values do not correlate with isotope tracers (e.g. 207Pb/204Pb and 87Sr/86Sr) that are indicative of the flux from subducting sedimentary and igneous crust. Given the steady, high Cl flux since at least 42 Ma, the temporal variability of d37Cl values is best explained by a flux from subducting isotopically positive and negative serpentinite formed in the ocean basins that mingles with and possibly overprints the isotopically negative flux from sediment and igneous crust at arc front depths. The change in the d37Cl values before and after backarc spreading may reflect either a tectonically induced change in the mechanism of serpentinite formation on the oceanic plate, or possibly the integration of isotopically positive wedge serpentinite as arc fluid source during the Neogene. Our study suggests that serpentinites are important fluid sources at arc front depth, and implies the return of isotopically positive and negative Cl from the Earth surface to the mantle.
Resumo:
Spinel harzburgites from ODP Leg 209 (Sites 1272A, 1274A) drilled at the Mid-Atlantic ridge between 14°N and 16°N are highly serpentinized (50-100%), but still preserve relics of primary phases (olivine >= orthopyroxene >> clinopyroxene). We determined whole-rock B and Li isotope compositions in order to constrain the effect of serpentinization on d11B and d7Li. Our data indicate that during serpentinization Li is leached from the rock, while B is added. The samples from ODP Leg 209 show the heaviest d11B (+29.6 to +40.52 per mil) and lightest d7Li (-28.46 to +7.17 per mil) found so far in oceanic mantle. High 87Sr/86Sr ratios (0.708536 to 0.709130) indicate moderate water/rock ratios (3 to 273, on the average 39), in line with the high degree of serpentinization observed. Applying the known fractionation factors for 11B/10B and 7Li/6Li between seawater and silicates, serpentinized peridotite in equilibrium with seawater at conditions corresponding to those of the studied drill holes (pH: 8.2; temperature: 200 °C) should have d11B of +21.52 per mil and d7Li of +9.7 per mil. As the data from ODP Leg 209 are clearly not in line with this, we modelled a process of seawater-rock interaction where d11B and d7Li of seawater evolve during penetration into the oceanic plate. Assuming chemical equilibrium between fluid and a rock with d11B and d7Li of ODP Leg 209 samples, we obtain d11B and d7Li values of +50 to +60 per mil, -2 to +12 per mil, respectively, for the coexisting fluid. In the oceanic domain, no hydrothermal fluids with such high d11B have yet been found, but are predicted by theoretical calculations. Combining the calculated water/rock ratios with the d7Li and d11B evolution in the fluid, shows that modification of d7Li during serpentinization requires higher water/rock ratios than modification of d11B. Extremely heavy d11B in serpentinized oceanic mantle can potentially be transported into subduction zones, as the B budget of the oceanic plate is dominated by serpentinites. Extremely light d7Li is unlikely to survive as the Li budget is dominated by the oceanic crust, even at small fractions.