152 resultados para scanning electron microscope (SEM)
Resumo:
In order to determine the shear parameters of the forearc sedimentary strata drilled during Ocean Drilling Program Leg 186, West Pacific Seismic Network, Japan Trench, eight whole-round samples were selected from different depths in the drilled sections of Sites 1150 and 1151. Whereas Site 1150 lays above the seismically active part of the subduction zone, Site 1151 is situated in an aseismic zone. The aim of the triaxial tests was, apart from determination of the static stress strain behavior of the sediments, to test the hypothesis that the static stress strain parameter could differ for each sites. In order to simulate undrained deformation conditions according to the high clay mineral content of the strata, consolidated undrained shear tests were performed in a triaxial testing setup. Measurements of water content, grain density, organic content, and microtextural investigations under the scanning electron microscope (SEM) accompanied the compression experiments. After the saturation and consolidation stages were completed, failure occurred in the compression stage of the experiments at peak strengths of 280-7278 kPa. The stiffness moduli calculated for each sample from differential stress vs. strain curves show a linear relationship with depth and range between 181 and 5827 kPa. Under the SEM, the artificial fault planes of the tested specimen only show partial alignment of clay minerals because of the high content of microfossils.
Resumo:
The capillary-pressure characteristics of 22 samples of lithified post-Paleozoic Indian-Ocean carbonates were compared to published data from older carbonate rocks (lower Paleozoic Hunton Group of Texas and Oklahoma). The Indian-Ocean samples are considerably more porous than are the Paleozoic samples, yet all of the Indian-Ocean samples fit readily into a descriptive petrofacies scheme previously established for the Hunton Group. The Indian-Ocean samples may be assigned to four petrophysical facies (petrofacies) based on the shapes of their capillary-pressure curves, their pore-throat-size distributions, their estimated recovery efficiency values (for nonwetting fluids), and the visual characteristics of their pore systems, as observed with a scanning-electron microscope. Petrofacies assignments for the Indian-Ocean samples are as follows. Petrofacies I includes six samples collected from the coarse basal portions of event deposits (primarily turbidites). These samples have large throats, leptokurtic throat-size distributions, low- to moderate recovery efficiency values, concave cumulative-intrusion capillary-pressure curves, and high porosity values. Petrofacies II includes two sedimentologically dissimilar samples that have medium-size throats, platykurtic throat-size distributions, moderate- to-high recovery efficiency values, gently sloping cumulative-intrusion capillary-pressure curves, and high porosity values. Petrofacies III includes two polymictic sandstones and a skeletal packstone that have small throats, polymodal throat-size distributions, moderate recovery efficiency values, gently sloping cumulative-intrusion capillary-pressure curves, and high porosity values. Petrofacies IV includes 11 samples, mostly recrystallized neritic carbonates, that have small throats, leptokurtic throat-size distributions, high recovery efficiency values, convex cumulative-intrusion capillary-pressure curves, and low porosity values. Comparison of petrofacies assignment to core-, thin-section-, and smear-slide data, and to inferred depositional setting, suggests that pore systems in most samples from Holes 765C and 766A result from primary depositional features, whereas pore systems in samples from Hole 761C and one sample from Hole 765C have been strongly influenced by diagenetic processes. For Hole 761C, prediction of petrophysical parameters should be most successful if based on diagenetic facies patterns. By contrast, the distribution of favorable reservoir facies and of permeability barriers in less highly altered rocks collected from Holes 765C and 766A is related to depositional patterns. Recovery efficiency is inversely related to both porosity and median throat size for the present data set. This relationship is similar to that observed for carbonates of the lower Paleozoic Hunton Group and the Ordovician Ellenburger dolomite, but opposite of that observed for some other ancient carbonates. The coarse deposits of the massive basal units of turbidites are petrophysically distinct and form a coherent petrophysical group (Petrofacies I) with substantial reservoir potential. Two samples assigned to Petrofacies I have extremely large throats (median throat size at least 4 ?m, and at least six times that of any other sample) and therefore high permeability values. These two samples come from thin, coarse turbidites that lack or have poorly developed fine divisions and are interpreted to have been deposited on channeled suprafan lobes in a proximal mid-fan setting. The restriction of extremely high permeability values to a single depositional facies suggests that careful facies mapping of deep-sea fans in a deliberate search for such coarse turbidites could dramatically enhance the success of exploration for aquifers or hydrocarbon reservoirs. Such reservoirs should have substantial vertical heterogeneity. They should have high lateral permeability values but low vertical permeability values, and reservoir sections should include numerous thin units having widely differing petrophysical characteristics.
Resumo:
Shipboard analysis of the 1183-m sedimentary section recovered at Site 918 in the Irminger Basin during Ocean Drilling Program Leg 152 revealed material of glacial origin (diamictons, ice-rafted debris (IRD) and dropstones) as deep as 543 m below sea floor (bsf). The sediment containing the deepest dropstone was biostratigraphically dated shipboard as approximately 7 Ma, pushing back the date for the onset of glaciation on southern Greenland by 5 Ma. Thin layers of fine sand were found as much as 60 m deeper in the core, raising the possibility of an even earlier date for glaciation. To determine the sedimentary history of these deeper sand layers, the surface textures on quartz grains from eleven cores bracketing the interval of interest were analyzed by scanning electron microscope. The results suggest that the grains in the 60-m interval below the deepest dropstone have a glacial history. At that level, an 11 -Ma Sr-isotope date was obtained from planktonic foraminifers. This late Miocene timing is supported biostratigraphically by both nannofossil and foraminifer assemblages, indicating a new minimum age for the onset of glaciation on southern Greenland and in the North Atlantic.
Resumo:
Surface sediments from the continental slope and rise of North-West Africa between the Canary lslands and the Cape Verde Islands are mainly composed of silt-sized material (2-63 µm). A number of sampling profiles were run normal to the coast and the composition of the silt fraction was determined quantitatively by scanning electron microscope analysis. The carbonate portion of the sediment was found to be nearly exclusively of biogenic origin. The most important contributors are planktonic foraminifers and coccoliths with minor contributions derived from pteropods. Plankton-produced biogenic opal such as diatoms and radiolarians play a very minor role. The high production rates of opal-silica plankton which exists in the surface waters of the NW-African upwelling system does not give rise to corresponding increases of opal accumulation in the bottom sediment. Benthic producers consist mainly of foraminifers and molluscs but the entire input from benthic producers is extremely small. An exception to this occurs in the prodelta sediments of the Senegal river. Downslope particle transport is indicated by the occurrence of shallow-water coralline algae, ascidian sclerites and cliona boring chips and can be traced as far down as the continental rise. The non-carbonate silt fraction mostly consists of quartz which is derived as eolian dust from the Sahara desert by the Harmattan and the NE-Trade-wind system. The percentage of carbonate in the surface sediments directly indicates the relative proportions of autochthonous biogenic components and terrigenous allochthonous quartz particles.
Resumo:
During Leg 134, the influence of ridge collision and subduction on the structural evolution of island arcs was investigated by drilling at a series of sites in the collision zone between the d'Entrecasteaux Zone (DEZ) and the central New Hebrides Island Arc. The DEZ is an arcuate Eocene-Oligocene submarine volcanic chain that extends from the northern New Caledonia Ridge to the New Hebrides Trench. High magnetic susceptibilities and intensities of magnetic remanence were measured in volcanic silts, sands, siltstones, and sandstones from collision zone sites. This chapter presents the preliminary results of studies of magnetic mineralogy, magnetic properties, and magnetic fabric of sediments and rocks from Sites 827 through 830 in the collision zone. The dominant carrier of remanence in the highly magnetic sediments and sedimentary rocks in the DEZ is low-titanium titanomagnetite of variable particle size. Changes in rock magnetic properties reflect variations in the abundance and size of titanomagnetite particles, which result from differences in volcanogenic contribution and the presence or absence of graded beds. Although the anisotropy of magnetic susceptibility results are difficult to interpret in terms of regional stresses because the cores were azimuthally unoriented, the shapes of the susceptibility ellipsoids provide information about deformation style. The magnetic fabric of most samples is oblate, dominated by foliation, as is the structural fabric. The variability of degree of anisotropy (P) and a factor that measures the shape of the ellipsoid (q) reflect the patchy nature of deformation, at a micrometer scale, that is elucidated by scanning electron microscope analysis. The nature of this patchiness implies that deformation in the shear zones is accomplished primarily by motion along bedding planes, whereas the material within the beds themselves remains relatively undeformed.
Resumo:
Stable isotope analyses and scanning electron micrographs have been carried out on six planktonic forminifera species, Pulleniatina obliquiloculata, Globorotalia tumida, Sphaeroidinella dehiscens, Globigerinoides ruber, Globigerinoides sacculifer and Globigerinoides quadrilobatus from eleven box-cores taken at increasing depths in the equatorial Ontong-Java Plateau (Pacific). This allows us to describe the way dissolution affects the microstructures of the tests of the different species and to quantify the changes of isotopic composition. We may conclude that: 1) dissolution effects on test morphology and stable isotope compositions are species dependent, species with a similar habitat showing a similar trend; 2) the shallow water, thin-shelled species are the first to disappear: scanning electron microscope (SEM) work shows alteration of outer layers. Deep water, thick-shelled species are present in all samples: SEM work shows breakdown and disparition of inner layers; 3) for all species there is a similar trend towards increasing delta18O values with increasing water depths and increasing dissolution. This effect may be as high as 0.6 ? per thousand meters for Globorotalia tumida; 4) below the lysocline, around 3500 m, it appears that 13C/12C ratios slightly increase towards equilibrium values for thick shelled species: G. tumida, P. obliquiloculata and S. dehiscens. 14C dates and isotope stratigraphy of two box-cores show that all samples are recent in age, and exclude upward mixing of glacial deposits as an important factor.
Resumo:
The coccolithophore Emiliania huxleyi was cultured under a broad range of carbonate chemistry conditions to distinguish the effects of individual carbonate system parameters on growth, primary production, and calcification. In the first experiment, alkalinity was kept constant and the fugacity of CO2(fCO2) varied from 2 to 600 Pa (1Pa ~ 10 µatm). In the second experiment, pH was kept constant (pHfree = 8) with fCO2 varying from 4 to 370 Pa. Results of the constant-alkalinity approach revealed physiological optima for growth, calcification, and organic carbon production at fCO2 values of ~20Pa, ~40 Pa, and ~80 Pa, respectively. Comparing this with the constant-pH approach showed that growth and organic carbon production increased similarly from low to intermediate CO2 levels but started to diverge towards higher CO2 levels. In the high CO2 range, growth rates and organic carbon production decreased steadily with declining pH at constant alkalinity while remaining consistently higher at constant pH. This suggests that growth and organic carbon production rates are directly related to CO2 at low (sub-saturating) concentrations, whereas towards higher CO2 levels they are adversely affected by the associated decrease in pH. A pH dependence at high fCO2 is also indicated for calcification rates, while the key carbonate system parameter determining calcification at low fCO2 remains unclear. These results imply that key metabolic processes in coccolithophores have their optima at different carbonate chemistry conditions and are influenced by different parameters of the carbonate system at both sides of the optimum.
Resumo:
The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments1. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange2. The present rise in atmospheric CO2 levels3 causes significant changes in surface ocean pH and carbonate chemistry4. Such changes have been shown to slow down calcification in corals and coralline macroalgae5,6, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.