124 resultados para large sample distributions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individual planktonic microfossil species, or assemblage groups of different species, are often used to, qualitatively and/or quantitatively, reconstruct past (sub)surface-water conditions of the world's oceans and seas. Until now, little information has been available on the surface sediment distribution patterns and paleoenvironmental reconstruction potential of coccolith, calcareous dinoflagellate cyst and organic-walled dinoflagellate cyst assemblages of the South and equatorial Atlantic, especially at the species level. This paper (i) summarizes the distributions of these three phytoplanktonic microfossil groups in numerous Atlantic surface sediments from 20°N-50°S and 30°E-65°W and determines their relationship with the physicochemical and trophic conditions of the overlying (sub)surface-waters, and (ii) determines the synecology of the three phytoplankton groups by carrying out statistical analyses (i.e. detrended and canonical correspondence analyses) on all groups simultaneously. Ecological relationships are additionally strengthened by statistically comparing the distribution patterns of the phytoplankton groups with those of planktonic foraminifera (Pflaumann et al. 1996; Niebler et al. 1998), as the ecological preferences of the latter are much better known. Many of the analyzed phytoplanktonic microfossil species or groups of species in the surface sediments do show restricted distributions which primarily reflect the environmental conditions of the upper water masses above them (e.g. sea-surface temperature, productivity, stratification). The acquired 'reference' data sets are large and diverse enough to allow future development of transfer functions for the reconstruction of past surface-water conditions, and show that there is still an enormous paleoenvironmental reconstruction potential concealed in many fossil coccolith and dinoflagellate cyst assemblages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new surface sediment sample set gained in the western Barents Sea by the MAREANO program has been analysed for basic clay mineral assemblages. Distribution maps including additional samples from earlier German research cruises to and off Svalbard are compiled. Some trends in the clay mineral assemblages are related to the sub-Barents Sea geology because the Quaternary sediment cover is rather thin. Additionally, land masses like Svalbard and northern Scandinavia dominate the clay mineral signal with their erosional products. Dense bottom water, very often of brine origin, that flows within deep troughs, such as the Storfjorden or Bear Island Trough, transport the clay mineral signal from their origin to the Norwegian-Greenland Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article will review major features of the 'giant' Cape Blanc filament off Mauritania with regard to the transport of chlorophyll and organic carbon from the shelf to the open ocean. Within the filament, chlorophyll is transported about 400 km offshore. Modelled particle distributions along a zonal transect at 21°N showed that particles with a sinking velocity of 5 m d**-1 are advected offshore by up to 600 km in subsurface particle clouds generally located between 400 m and 800 m water depth, forming an Intermediate Nepheloid Layer (INL). It corresponds to the depth of the oxygen minimum zone. Heavier particles with a sinking velocity of 30 m d**-1 are transported from the shelf within the Bottom Layer (BL) of more than 1000 m thickness, largely following the topography of the bottom slope. The particles advected within the BL contribute to the enhanced winter-spring mass fluxes collected at the open-ocean mesotrophic sediment trap site CB-13 (200 nm offshore), due to a long distance advection in deeper waters. The lateral contribution to the deep sediment trap in winter-spring is estimated to be 63% and 72% for organic carbon and total mass, respectively, whereas the lateral input for both components on an annual basis is estimated to be in the order of 15%. Biogenic opal increases almost fivefold from the upper to the lower mesotrophic CB-13 trap, also pointing to an additional source for biogenic silica from eutrophic coastal waters. Blooms obviously sink in smaller, probably mesoscale-sized patches with variable settling rates, depending on the type of aggregated particles and their ballast content. Generally, particle sinking rates are exceptionally high off NW Africa. Very high chlorophyll values and a large size of the Cape Blanc filament in 1998-1999 are also documented in enhanced total mass and organic carbon fluxes. An increasing trend in satellite chlorophyll concentrations and the size of the Cape Blanc filament between 1997 and 2008 as observed for other coastal upwelling areas is not documented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palmer Deep is a series of three glacially overdeepened basins on the Antarctic Peninsula shelf, ~20 km southwest of Anvers Island. Site 1098 (64°51.72'S, 64°12.48'W) was drilled in the shallowest basin, Basin I, at 1012 m water depth. The sediment recovered was primarily laminated, siliceous, biogenic, pelagic muds alternating with siliciclastic hemipelagic sediments (Barker, Camerlenghi, Acton, et al., 1999). Sedimentation rates of 0.1725 cm/yr in the upper 25 m and 0.7-0.80 cm/yr in the lower 25 m of the core have been estimated from 14C (Domack et al., 2001). The oldest datable sediments have an age of ~13 ka and were underlain by diamicton sediments of the last glacial maximum (Domack et al., 2001). The large-scale water-mass distribution and circulation in the vicinity of Palmer Deep is dominated by Circumpolar Deep Water (CDW) below 200 m (Hofmann et al., 1996). Palmer Deep is too far from the coast to be influenced by glacial meltwater and cold-tongue generation associated with it (Domack and Williams, 1990; Dixon and Domack, 1991). Circulation patterns in the Palmer Deep area are not well understood, but evidence suggests southward flow across Palmer Deep from Anvers Island to Renaud Island (Kock and Stein, 1978). The water south of Anvers Island is nearly open with loose pack ice from February through May. The area is covered with sea ice beginning in June (Gloersen et al., 1992; Leventer et al., 1996). Micropaleontologic data from the work of Leventer et al. (1996) on a 9-m piston core has revealed circulation and climate patterns for the past 3700 yr in the Palmer Deep. The benthic foraminifer assemblage is dominated by two taxa, Bulimina aculeata and Bolivina pseudopunctata, which are inversely related. High relative abundances of B. aculeata occur cyclically over a period of ~230 yr. The assemblage associated with high abundance of B. aculeata in Palmer Deep resembles that from the Bellingshausen shelf, which is associated with CDW. In addition to the faunal evidence, hydrographic data indicate incursions of CDW into Palmer Deep (Leventer et al., 1996). A distinctive diatom assemblage dominated by a single genus was associated with peaks in B. aculeata, whereas a few different assemblages were associated with lows in B. aculeata. Leventer et al. (1996) interpreted the variability in diatom assemblages as an indication of changes in productivity associated with changes in water column stability. Abelmann and Gowing (1997) studied the horizontal and vertical distributions of radiolarians in the Atlantic sector of the Southern Ocean. They show that the spatial distribution of radiolarian assemblages reflects hydrographic boundaries. In a transect from the subtropical Atlantic to polar Antarctic zones, radiolarians in the upper 1000 m of the water column occurred in distinct surface and deep-living assemblages related to water depth, temperature, salinity, and nutrient content. Living assemblages resembled those preserved in underlying surface sediments (Abelmann and Gowing, 1997). Circumantarctic coastal sediments from neritic environments contained a distinctive assemblage dominated by the Phormacantha hystrix/Plectacantha oikiskos group and Rhizoplegma boreale (Nishimura et al., 1997). Low diversity and species compositions distinguished the coastal sediments from the typical pelagic Antarctic assemblages. Factors that controlled the assemblages were water depth, proximity to the coast, occurrence of sea ice, and steepness of topography, rather than temperature and salinity. Nishimura et al. (1997) found a gradient of sorts from deep-water sites containing diverse assemblages typical of pelagic environments to coastal sites with low diversity assemblages dominated by P. hystrix/P. oikiskos group and R. boreale. In general, sites between these two extremes had increased proportions of the coastal assemblage with decreasing water depth (Nishimura et al., 1997). At a site near Hole 1098 (GC905), they showed that the relative abundance of the coastal assemblage increased downcore (Nishimura et al., 1997). The purpose of the research presented here was to make a cursory investigation into the radiolarian assemblages as possible paleoenvironmental indicators.