125 resultados para frequency of genotypes
Resumo:
The lamination and burrowing patterns in 17 box cores were analyzed with the aid of X-ray photographs and thin sections. A standardized method of log plotting made statistical analysis of the data possible. Several 'structure types' were established, although it was realized that the boundaries are purely arbitrary divisions in what can sometimes be a continuous sequence. In the transition zone between marginal sand facies and fine-grained basin facies, muddy sediment is found which contains particularly well differentiated, alternating laminae. This zone is also characterized by layers rich in plant remains. The alternation of laminae shows a high degree of statistical scattering. Even though a small degree of cyclic periodicity could be defined, it was impossible to correlate individual layers from core to core across the bay. However, through a statistical handling of the plots, zones could be separated on the basis of the number of sand layers they contained. These more or minder sandy zones clarified the bottom reflections seen in the records of the echograph from the area. The manner of facies change across the bay, suggests that no strong bottom currents are effective in the Eckernförde Bay. The marked asymmetry between the north and south flanks of the profile can be attributed to the stronger action of waves on the more exposed areas. Grain size analyses were made from the more homogeneous units found in a core from the transition-facies zone. The results indicate that the most pronounced differences between layers appear in the silt range, and although the differences are slight, they are statistically significant. Layers rich in plant remains were wet-sieved in order to separate the plant detritus. This was than analyzed in a sediment settling balance and found to be hydrodynamically equivalent to a well-sorted, finegrained sand. A special, rhythmic cross-bedding type with dimensions in the millimeter range, has been named 'Crypto-cross-lamination' and is thought to represent rapid sedimentation in an area where only very weak bottom currents are present. It is found only in the deepest part of the basin. Relatively large sand grains, scattered within layers of clayey-silty matrix, seem to be transported by flotation. Thin section examination showed that the inner part of Eckernförder Bay carbonate grains (e. g. Foraminifera shells) were preserved throughout the cores, while in the outer part of the bay they were not present. Well defined tracks and burrows are relatively rare in all of the facies in comparision to the generally strongly developed deformation burrowing. The application of special measures for the deformation burrowing allowed to plot their intensity in profile for each core. A degree of regularity could be found in these burrowing intensity plots, with higher values appearing in the sandy facies, but with no clear differences between sand and silt layers in the transition facies. Small sections in the profiles of the deepest part of the bay show no bioturbation at all.
Resumo:
Pumas are one of the most studied terrestrial mammals because of their widespread distribution, substantial ecological impacts, and conflicts with humans. Extensive efforts, often employing genetic methods, are undertaken to manage this species. However, the comparison of population genetic data is difficult because few of the microsatellite loci chosen are shared across research programs. Here, we describe the development of PumaPlex, a high-throughput assay to genotype 25 single nucleotide polymorphisms in pumas. We validated PumaPlex in more than 700 North American pumas (Puma concolor couguar), and demonstrated its ability to generate reproducible genotypes and accurately identify individuals. Furthermore, we compared PumaPlex with traditional genotyping of 12 microsatellite loci in fecal DNA samples and found that PumaPlex produced significantly more genotypes with fewer false alleles. PumaPlex promotes the cross-laboratory comparison of genotypes, is easily expandable in the future, and is a valuable tool for the genetic monitoring and management of North American puma populations.
Resumo:
At sites 390 and 392 (Deep Sea Drilling Project, Leg 44) on the Blake nose, thoroughly lithified Lower Cretaceous limestone more than 250 m thick is abruptly overlain by a condensed sequence of Barremian to Eocene pelagic carbonate ooze. The Lower Cretaceous sediments consist of three units: limestone with moldic porosity (base), oolitic limestone, and fenestral limestone. Subaerial diagenesis of the limestone section is recorded by (1) caverns with vertical dimensions of up to 10 m, (2) stalactitic intergranular cement, and (3) meniscus sediment (or cement). Compatible with these subaerial features are mud cracks, fenestral fabrics, intraclasts, and cryptalgal structures. Inasmuch as these shallow-water and tidal-flat deposits are now beneath 2,607 m of sea water (plus 99 m of younger sediments), they serve to dramatize the apparent degree of Barremian and later subsidence of this part of the Atlantic outer continental shelf. Porosity and permeability are high in vuggy samples, which are common in the skelmoldic limestone. Cementation has destroyed most of the extensive primary porosity of the two younger units.