976 resultados para delta 13C, methane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interstitial water and sediment samples of the Integrated Ocean Drilling Program (IODP) expedition 313 "New Jersey Shallow Shelf" were analyzed for chemical composition and stable isotope ratios. A total of 222 water samples were collected from the cores by Rhizon samplers and squeezing of fresh core material. Water was analyzed for its stable oxygen and hydrogen isotope geochemistry (d2H and d18O) at sites M0027A and M0029A, and the carbon isotope composition of the dissolved inorganic carbon (d13CDIC) (all sites). In addition, organic material (Corg) and inorganic carbonates from sediments were analyzed for their carbon ratios (d13Corg and d13Ccarb), and in case of the carbonates also for oxygen (d18Ocarb). Carbon isotopes were also analyzed in samples containing enough methane gas (d13Cmeth). Pore fluids from site M0027A were analyzed for the sulfur isotope composition of dissolved sulfate (d34S). The combination of isotope analyses of all phases (interstitial water, sediment, and gas) with pore water chemistry is expected to enable a better understanding of processes in the sediment and will help to identify the origin of fluids under the New Jersey shelf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isotopic characteristics of CH4 (d13C values range from -101.3 per mil to -61.1 per mil PDB, and dD values range from -256 per mil to -136 per mil SMOW) collected during Ocean Drilling Program (ODP) Leg 164 indicate that the CH4 was produced by microbial CO2 reduction and that there is not a significant contribution of thermogenic CH4 to the sampled sediment gas from the Blake Ridge. The isotopic values of CO2 (d13C range -20.6 per mil to +1.24 per mil PDB) and dissolved inorganic carbon (DIC; d13C range -37.7 per mil to +10.8 per mil PDB) have parallel profiles with depth, but with an offset of 12.5 per mil. Distinct downhole variations in the carbon isotopic composition of CH4 and CO2 cannot be explained by closed-system fractionation where the CO2 is solely derived from the locally available sedimentary organic matter (d13C -2.0 per mil ± 1.4 per mil PDB) and the CH4 is derived from CO2 reduction. The observed isotopic profiles reflect the combined effects of upwards gas migration and decreased microbial activity with depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anaerobic methane oxidation (AMO) was characterized in sediment cores from the Blake Ridge collected during Ocean Drilling Program (ODP) Leg 164. Three independent lines of evidence support the occurrence and scale of AMO at Sites 994 and 995. First, concentration depth profiles of methane from Hole 995B exhibit a region of upward concavity suggestive of methane consumption. Diagenetic modeling of the concentration profile indicates a 1.85-m-thick zone of AMO centered at 21.22 mbsf, with a peak rate of 12.4 nM/d. Second, subsurface maxima in tracer-based sulfate reduction rates from Holes 994B and 995B were observed at depths that coincide with the model-predicted AMO zone. The subsurface zone of sulfate reduction was 2 m thick and had a depth integrated rate that compared favorably to that of AMO (1.3 vs. 1.1 nmol/cm**2/d, respectively). These features suggest close coupling of AMO and sulfate reduction in the Blake Ridge sediments. Third, measured d13CH4 values are lightest at the point of peak model-predicted methane oxidation and become increasingly 13C-enriched with decreasing sediment depth, consistent with kinetic isotope fractionation during bacterially mediated methane oxidation. The isotopic data predict a somewhat (60 cm) shallower maximum depth of methane oxidation than do the model and sulfate reduction data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon isotopic data of interstitial dissolved CO2 (CO2), CO2 gas, and methane show that a variety of microbial diagenetic processes produce the observed isotopic trends. Anaerobic methane oxidation (AMO) is an important process near the sulfate-methane interface (SMI) that strongly influences the isotopic composition of CO2 in the sulfate reduction and upper methanogenic zones, which in turn impacts methane isotopic composition. Dissolved CO2 and methane are maximally depleted in 13C near the SMI, where 13C values are as light as -31.8 and -101 PDB for CO2 and methane, respectively. CO2 reduction links the CO2 and methane pools in the methanogenic zone so that the carbon isotopic composition of both pools evolves in concert, generally showing increasing enrichments of 13C with increasing depth. These isotopic trends mirror those within other methane-rich continental rise sediments worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present high resolution profiles for the methane concentration and the carbon isotope composition of methane from surface sediments and from the sediment-water transition in the Black Sea. At shallow water sites methane migrates from the sediment into the water column, and the magnitude of this upward migrating flux depends on the depth of the sulfate-methane transition (SMT) in the sediment. The isotope data reveal that the sediments at shallow water sites are a source for methane depleted in 13C relative to the isotope composition of methane in the water column. At deep water sites the methane concentration first decreases with depth in the sediment to reach lowest values at the Unit I to Unit II transition. Below this transition the concentration increases again. Numerical modeling of methane concentration and isotope data shows that high methane oxidation rates occur in the surface sediment layer, indicating that the removal of methane in the surface sediments is not related to the anaerobic oxidation of methane coupled to sulfate reduction that occurs a few meters deep in the sediment, at the SMT. Instead, near-surface methane consumption in the euxinic Black Sea sediments appears to be related to lithological stratification. Furthermore, a map of the diffusive methane fluxes in the Black Sea surface sediments indicates that approximately half of the Black Sea seafloor acts as a sink for methane and thus limits the flux of methane to the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg/m**2 per year at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane d13C from -63 per mil to -35 per mil directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organic geochemistry of Sites 1108 and 1109 of the Woodlark Basin, offshore Papua New Guinea, was studied to determine whether thermally mature hydrocarbons were present in the penetrated section and, if present, whether they are genetically related to the penetrated "coaly" interval. Both the organic carbon and pyrolysis data indicate that there is no significant hydrocarbon source-rock potential at Site 1108. The hydrocarbons encountered during drilling appear to be indigenous and not migrated products or contaminants. In contrast, the coaly interval at Site 1109 contains zones with significant hydrocarbon-generation potential. Several independent lines of evidence indicate that the coaly sequence encountered at Site 1109 is thermally immature. The Site 1108 methane stable-carbon isotope composition does not display a clear trend with depth as would be expected if it was solely reflecting a maturation profile. The measured isotopic composition of methane has most probably been altered by fractionation during sample handling and storage. This fractionation would result in isotopically heavier values than would be obtained on free gas. The organic geochemical data gathered indicate that Site 1108 can be safely revisited and that the organic-rich sediments encountered at Site 1109 were not the source of the gas encountered at Site 1108.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic matter contents of black shales from the Cretaceous Hatteras and Blake-Bahama formations have been compared to those from surrounding organic-poor strata using C/N ratios, d13C values, and distributions of extractable and nonsolvent-extractable, long-chain hydrocarbons, acids, and alcohols. The proportion of marine and land-derived organic matter varies considerably among all samples, although terrigenous components generally dominate. Most black shales are hydrocarbon-poor relative to their organic-carbon concentrations. Deposition of the black shales in Hole 603B evidently occurred through turbiditic relocation from shallower landward sites and rapid reburial at this outer continental rise location under generally oxygenated bottom-water conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substantial amounts of adsorbed methane were detected in authigenic carbonate concretions recovered from sedimentary layers from depths between 245 and 1,108 m below seafloor during Ocean Drilling Program Leg 186 to ODP sites 1150 and 1151 on the deep-sea terrace of the Japan Trench. Methane contents were almost two orders of magnitude higher in the concretions (291-4,528 nmol/g wet wt) than in the surrounding bulk sediments (5-93 nmol/g wet wt), whereas methane/ethane ratios and stable carbon isotopic compositions were very similar. Carbonate content of surrounding bulk sediments (0.02-3.2 wet wt%) and methane content of the surrounding bulk sediments correlated positively. Extrapolation of the carbonate contents of bulk sediments suggests that 100 wt% carbonate would correspond to 1,886±732 nmol methane per g bulk sediment, which is similar to the average value observed in the carbonate concretions (1,321±1,067 nmol/g wet wt, n = 13). These data support the hypothesis that, in sediments, adsorbed hydrocarbon gases are strongly associated with authigenic carbonates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous triple stable isotope analysis of carbon, nitrogen and sulphur was employed to study the temporal variation in the food web of a subtidal eelgrass (Zostera marina) bed in the western Baltic Sea. Samples of three potential food sources: eelgrass, epiphytes and seston, as well as consumer species were collected biweekly from March through September 2011. Temporal variation of stable isotope signatures was observed in primary producers and consumer species. However, variation within a species, particularly omnivores, often exceeded variation over time. The high degree of omnivory among the generalist feeders in this eelgrass community allows for generalist feeders to flexibly switch food sources, thus enhancing food web stability. As coastal systems are subject to seasonal changes, as well as alterations related to human disturbance and climate, these food webs may retain a certain resilience due to their plentiful omnivores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der Wassersäule der Laptew See haben die Bildungs- und Verteilungsbedingungen vielfliltige Ursachen. Für die südliche Lapt ew See konnte eine Methananomalie innerhalb des Lenaausstrorns nachgewiesen werden, die im direkten Zusammenhang mit dem Flußwasser stehen muß. Mit den hohen Konzentrationen am Kontinentalhang ergab sich ein Hinweis auf eventuell vorhandene Gashydrate an der Sole eines zum Hang hin auskeilenden Permafrosts oder auf Gashydrate in den Sedimenten des Kontinentalhangs selbst. Ob es entlang der reliktisch vorhandenen, ehemaligen Flußläufe auf dem Schel f ebenfalls zu Entgasungen kommt, bleibt allerdings weiter unklar, da dieses Phänomen nicht beobachtet wurde oder die Anomalien nicht eindeutig diesem Prozeß zuzuordnen waren. Sicherlich ist die COz-Reduktion im Sediment in der Laptew See eine Hauptquelle für marines, bodennahes Methan. Die Ergebnisse. zeigen, daß dieser Bildungsprozeß vor allem für die küstennahen Bereiche wahrscheinlich ist. Dennoch gibt es auch Bereiche, wo die Zuordnung zu einer expliziten Methanquelle nicht eindeutig ist. Für eine genauere Bewertung der Herkunft der Gase sollten in künftigen Untersuchungen die Methankonzentrationen des Sediments einbezogen werden. Aber auch die Isotopensignaturen des Gases im Sediment können wertvolle Hinweise auf die Genese geben, vor allem wenn die Wasserstoffisotopie mituntersucht wird. Dies erscheint sinnvoll, da sich dur ch leichtes, bodennahes, Methan in der Wassersäule Hinweise auf biogene Bildungen ergaben, dieser Befund könnte durch weitere Untersuchungen präzisiert werden. Dies gilt aber auch für die CH4-Anomalien des OberfIächenwassers. Auch hier ergaben sich durch leicht KohIenstoffsignaturen Hinweise auf biogene in situ-Produktion. Mit detaillierteren Methankonzentrations- und d13C- CH4-Isotopenprofilen der Wassersäule könnte dieser Bildungspfad eindeutiger beschrieben werden. Es konnte ferner gezeigt werden, daß die Lapt ew See während der Sommermonate eine Quelle für atmosphärisches CI L darstellt. Das emittierte Gas geht neben vereinzelten Bodenquellen auch auf in situ-Produktion in der Wassersäule zurück. Abgesehen von der nördlichen Region geht das Methan bodennaher Anomalien innerhalb der Wassersäule sehr schnell zurück und nur ein kleiner Teil gelangt so schließlich in die Atmosphäre. Der während der ARK-XIV Expedition getestete Methansensor hat sich als ungeeignet für den Einsatz gemeinsam mit der CTD erwiesen. Es hat sich gezeigt, daß der Sensor unter diesen Bedingungen nicht genügend Zeit hat, um sein Meßsignal zu stabilisieren. Möglicherweise kann er aber in modifizierter For m und mit einer Kalibration für niedrigere Konzentrationsbereiche als stationäres Meßgerät eingesetzt werden. Für hohe CH4-Konzentrationen, wie man sie an Pockmarks antrifft, ist die Methansensormessung sicherlich auch jetzt schon eine geeignete Methode.