151 resultados para data-types
Resumo:
Morphological and U-Pb isotope studies on sedimentary zircons reflect the orogenic evolution of their former host rocks. The orogenic history of detrital zircons from the Trinity Peninsula Formation (TPF) defines the former geological surrounding of the sedimentation basin of the TPF. Same few weil rounded, polycyclic zircons of Precambrian age and Cambrian overprint give hints for an old cratonic source rock. Because of their very low frequency compared with euhedral types, the contribution of an cratonic shield area to the bulk of the sedimentary debris is neglectable low. Euhedral zircons of granitoid origin and Carboniferous age indicate a derivation from an area of widespread Carboniferous intrusions. Except for southern South America and unsurveyed regions in the Antarctic Peninsula itself, no region could deliver zircons with a Carboniferous age record. The only acceptable explanation for the origin of these zircons is a position of the Antarctic Peninsula during the sedimentation of the TPF approximately southwest of southern South America.
Resumo:
Total contents of carbohydrates were determined in samples of natural sediments of various genetic types. Analyses were made on board. Deep-sea pelagic sediments (red clays of various types including zeolite clays, and also radiolarian and carbonate oozes) were the main types of sediments studied. Contents of carbohydrates in pelagic oozes of the Central Pacific ranged from 214 to 1605 ppm, averaging 602 ppm of air-dried sediment. Organic matter of the group studied is a diagenetically stable complex, with polysaccharides apparently predominating.
Resumo:
Physiognomic traits of plant leaves such as size, shape or margin are decisively affected by the prevailing environmental conditions of the plant habitat. On the other hand, if a relationship between environment and leaf physiognomy can be shown to exist, vegetation represents a proxy for environmental conditions. This study investigates the relationship between physiognomic traits of leaves from European hardwood vegetation and environmental parameters in order to create a calibration dataset based on high resolution grid cell data. The leaf data are obtained from synthetic chorologic floras, the environmental data comprise climatic and ecologic data. The high resolution of the data allows for a detailed analysis of the spatial dependencies between the investigated parameters. The comparison of environmental parameters and leaf physiognomic characters reveals a clear correlation between temperature related parameters (e.g. mean annual temperature or ground frost frequency) and the expression of leaf characters (e.g. the type of leaf margin or the base of the lamina). Precipitation related parameters (e.g. mean annual precipitation), however, show no correlation with the leaf physiognomic composition of the vegetation. On the basis of these results, transfer functions for several environmental parameters are calculated from the leaf physiognomic composition of the extant vegetation. In a next step, a cluster analysis is applied to the dataset in order to identify "leaf physiognomic communities". Several of these are distinguished, characterised and subsequently used for vegetation classification. Concerning the leaf physiognomic diversity there are precise differences between each of these "leaf physiognomic classes". There is a clear increase of leaf physiognomic diversity with increasing variability of the environmental parameters: Northern vegetation types are characterised by a more or less homogeneous leaf physiognomic composition whereas southern vegetation types like the Mediterranean vegetation show a considerable higher leaf physiognomic diversity. Finally, the transfer functions are used to estimate palaeo-environmental parameters of three fossil European leaf assemblages from Late Oligocene and Middle Miocene. The results are compared with results obtained from other palaeo-environmental reconstructing methods. The estimates based on a direct linear ordination seem to be the most realistic ones, as they are highly consistent with the Coexistence Approach.
Resumo:
Hydrogen isotope values (dD) of sedimentary terrestrial leaf wax such as n-alkanes or n-acids have been used to map and understand past changes in rainfall amount in the tropics because dD of precipitation is commonly assumed as the first order controlling factor of leaf wax dD. Plant functional types and their photosynthetic pathways can also affect leaf wax dD but these biological effects are rarely taken into account in paleo studies relying on this rainfall proxy. To investigate how biological effects may influence dD values we here present a 37,000-year old record of dD and stable carbon isotopes (d13C) measured on four n-alkanes (n-C27, n-C29, n-C31, n-C33) from a marine sediment core collected off the Zambezi River mouth. Our paleo d13C records suggest that each individual n-alkanes had different C3/C4 proportional contributions. n-C29 was mostly derived from a C3 dicots (trees, shrubs and forbs) dominant vegetation throughout the entire record. In contrast, the longer chain n-C33 and n-C31 were mostly contributed by C4 grasses during the Glacial period but shifted to a mixture of C4 grasses and C3 dicots during the Holocene. Strong correlations between dD and d13C values of n-C33 (correlation coefficient R2 = 0.75, n = 58) and n-C31 (R2 = 0.48, n = 58) suggest that their dD values were strongly influenced by changes in the relative contributions of C3/C4 plant types in contrast to n-C29 (R2 = 0.07, n = 58). Within regions with variable C3/C4 input, we conclude that dD values of n-C29 are the most reliable and unbiased indicator for past changes in rainfall, and that dD and d13C values of n-C31 and n-C33 are sensitive to C3/C4 vegetation changes. Our results demonstrate that a robust interpretation of palaeohydrological data using n-alkane dD requires additional knowledge of regional vegetation changes from which nalkanes are synthesized, and that the combination of dD and d13C values of multiple n-alkanes can help to differentiate biological effects from those related to the hydrological cycle.
Resumo:
Acoustic and pelagic trawl data were collected during various pelagic surveys carried out by IFREMER in May between 2000 and 2012 (except 2001), on the eastern continental shelf of the Bay of Biscay (Pelgas series). The acoustic data were collected with a Simrad EK60 echosounder operating at 38 kHz (beam angle at -3 dB: 7°, pulse length set to 1.024 ms). The echosounder transducer was mounted on the vessel keel, at 6 m below the sea surface. The sampling design were parallel transects spaced 12 nm apart which were orientated perpendicular to the coast line from 20 m to about 200 m bottom depth. The nominal sailing speed was 10 knots and 3 knots on average during fishing operations. The scrutinising (species identification) of acoustic data was done by first characterising acoustic schools by type and then linking these types with the species composition of specific trawl hauls. The data set contains nautical area backscattering values, biomass and abundance estimates for blue whiting for one nautical mile long transect lines. Further information on the survey design, scrutinising and biomass estimation can be found in Doray et al. 2012.
Resumo:
Nineteen samples of the Cape Roberts-1 drillcore were taken from Miocene- age deposits, from 90.25 - 146.50 metres below seafloor (mbsf) for thin section and laser grain-size analysis. Using the grain-size distribution, detailed core logging, X-radiography and thin-section analysis of microstructures, coupled with a statistical grouping of the grain-size data, three main styles of gravity-flow sedimentation were revealed. Thin (centimetre-scale) muddy debris-flow deposits are the most common and are possibly tirggered by debris rain-out from sea-ice These deposits are characterised by very poorly sorted, faintly laminated muddy sandstones with coarse granules toward their base. Contacts are gradational to sharp. Variations on this style of mass-wasting deposit are rhythmically stacked sequences of pebbly-coarse sandstones representing successive thin debris-flow events. These suggest very high sedimentation rates on an unstable slope in a shallow-water proximal glacimarine environment. Sandy-silty turbidites appear more common in the lower sections of the core, below approximately 141.00 mbsf, although they occur occasionally with the debris flow deposits The turbidites are characterised by inversely to normally graded, well-laminated siltstones with occasional lonestones, and represent a more distal shallow-water glacimarine environment.
Resumo:
The flow of ice streams, which account for most discharge from large ice sheets, is controlled by processes operating at their bed. Data from modern ice stream beds are difficult to obtain, but where ice advanced onto continental shelves during glacial periods extensive areas of the former bed can be imaged using modern swath sonar tools. We present new multibeam swath bathymetry data analyzed alongside sparse pre-existing data from the Amundsen Sea Embayment. The compilation is the most extensive, continuous area of multibeam data coverage yet obtained on the inner continental shelf of Antarctica. The data reveal streamlined subglacial bedforms that define a zone of paleo-ice stream convergence but, in contrast to previous models, do not show a simple down-flow progression of bedform types along paleo-ice stream troughs. We interpret high spatial variability of bedforms as indicating a complex mechanical and hydrodynamic regime at the former ice stream beds, consistent with observations from some modern ice streams. We conclude that care must be taken when using bedforms to infer paleo-ice stream velocities.
Resumo:
Eleven sediment samples taken downcore and representing the past 26 kyr of deposition at MANOP site C (0°57.2°N, 138°57.3°W) were analyzed for lipid biomarker composition. Biomarkers of both terrestrial and marine sources of organic carbon were identified. In general, concentration profiles for these biomarkers and for total organic carbon (TOC) displayed three common stratigraphic features in the time series: (1) a maximum within the surface sediment mixed layer (<=4 ka); (2) a broad minimum extending throughout the interglacial deposit; and (3) a deep, pronounced maximum within the glacial deposit. Using the biomarker records, a simple binary mixing model is described that assesses the proportion of terrestrial to marine TOC in these sediments. Best estimates from this model suggest that ~20% of the TOC is land-derived, introduced by long-range eolian transport, and the remainder is derived from marine productivity. The direct correlation between the records for terrestrial and marine TOC with depth in this core fits an interpretation that primary productivity at site C has been controlled by wind-driven upwelling at least over the last glacial/interglacial cycle. The biomarker records place the greatest wind strength and highest primary productivity within the time frame of 18 to 22 kyr B.P. Diagenetic effects limit our ability to ascertain directly from the biomarker records the absolute magnitude that different types of primary productivity have changed at this ocean location over the past 26 kyr.
Resumo:
The Lena River Delta, situated in Northern Siberia (72.0 - 73.8° N, 122.0 - 129.5° E), is the largest Arctic delta and covers 29,000 km**2. Since natural deltas are characterised by complex geomorphological patterns and various types of ecosystems, high spatial resolution information on the distribution and extent of the delta environments is necessary for a spatial assessment and accurate quantification of biogeochemical processes as drivers for the emission of greenhouse gases from tundra soils. In this study, the first land cover classification for the entire Lena Delta based on Landsat 7 Enhanced Thematic Mapper (ETM+) images was conducted and used for the quantification of methane emissions from the delta ecosystems on the regional scale. The applied supervised minimum distance classification was very effective with the few ancillary data that were available for training site selection. Nine land cover classes of aquatic and terrestrial ecosystems in the wetland dominated (72%) Lena Delta could be defined by this classification approach. The mean daily methane emission of the entire Lena Delta was calculated with 10.35 mg CH4/m**2/d. Taking our multi-scale approach into account we find that the methane source strength of certain tundra wetland types is lower than calculated previously on coarser scales.
Resumo:
Underwater georeferenced photo-transect surveys were conducted on December 10-15, 2011 at various sections of the reef at Lizard Island, Great Barrier Reef. For this survey a snorkeler or diver swam over the bottom while taking photos of the benthos at a set height using a standard digital camera and towing a GPS in a surface float which logged the track every five seconds. A standard digital compact camera was placed in an underwater housing and fitted with a 16 mm lens which provided a 1.0 m x 1.0 m footprint, at 0.5 m height above the benthos. Horizontal distance between photos was estimated by three fin kicks of the survey diver/snorkeler, which corresponded to a surface distance of approximately 2.0 - 4.0 m. The GPS was placed in a dry-bag and logged the position as it floated at the surface while being towed by the photographer. A total of 5,735 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of each benthic photo (Roelfsema 2009). Approximation of coordinates of each benthic photo was conducted based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software (www.geospatialexperts.com). Coordinates of each photo were interpolated by finding the GPS coordinates that were logged at a set time before and after the photo was captured. Benthic or substrate cover data was derived from each photo by randomly placing 24 points over each image using the Coral Point Count for Microsoft Excel program (Kohler and Gill, 2006). Each point was then assigned to 1 of 78 cover types, which represented the benthic feature beneath it. Benthic cover composition summary of each photo scores was generated automatically using CPCE program. The resulting benthic cover data of each photo was linked to GPS coordinates, saved as an ArcMap point shapefile, and projected to Universal Transverse Mercator WGS84 Zone 55 South.
Resumo:
Underwater georeferenced photo-transect surveys were conducted on October 3-7, 2012 at various sections of the reef and lagoon at Lizard Island, Great Barrier Reef. For this survey a snorkeler swam while taking photos of the benthos at a set distance from the benthos using a standard digital camera and towing a GPS in a surface float which logged the track every five seconds. A Canon G12 digital camera was placed in a Canon underwater housing and photos were taken at 1 m height above the benthos. Horizontal distance between photos was estimated by three fin kicks of the survey snorkeler, which corresponded to a surface distance of approximately 2.0 - 4.0 m. The GPS was placed in a dry bag and logged the position at the surface while being towed by the photographer (Roelfsema, 2009). A total of 1,265 benthic photos were taken. Approximation of coordinates of each benthic photo was conducted based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software (www.geospatialexperts.com). Coordinates of each photo were interpolated by finding the GPS coordinates that were logged at a set time before and after the photo was captured. Benthic or substrate cover data was derived from each photo by randomly placing 24 points over each image using the Coral Point Count for Microsoft Excel program (Kohler and Gill, 2006). Each point was then assigned to 1 of 79 cover types, which represented the benthic feature beneath it. Benthic cover composition summary of each photo scores was generated automatically using CPCE program. The resulting benthic cover data of each photo was linked to GPS coordinates, saved as an ArcMap point shapefile, and projected to Universal Transverse Mercator WGS84 Zone 55 South.
Resumo:
Natural CO2 venting systems can mimic conditions that resemble intermediate to high pCO2 levels as predicted for our future oceans. They represent ideal sites to investigate potential long-term effects of ocean acidification on marine life. To test whether microbes are affected by prolonged exposure to pCO2 levels, we examined the composition and diversity of microbial communities in oxic sandy sediments along a natural CO2 gradient. Increasing pCO2 was accompanied by higher bacterial richness and by a strong increase in rare members in both bacterial and archaeal communities. Microbial communities from sites with CO2 concentrations close to today's conditions had different structures than those of sites with elevated CO2 levels. We also observed increasing sequence abundance of several organic matter degrading types of Flavobacteriaceae and Rhodobacteraceae, which paralleled concurrent shifts in benthic cover and enhanced primary productivity. With increasing pCO2, sequences related to bacterial nitrifying organisms such as Nitrosococcus and Nitrospirales decreased, and sequences affiliated to the archaeal ammonia-oxidizing Thaumarchaeota Nitrosopumilus maritimus increased. Our study suggests that microbial community structure and diversity, and likely key ecosystem functions, may be altered in coastal sediments by long-term CO2 exposure to levels predicted for the end of the century.