420 resultados para continental Antarctica
Resumo:
Foraminifera are examined in twenty-six samples from a 44 metre succession of Quaternary glacial sediments recovered from the CRP-1 drillhole on Roberts Ridge, southwestern Ross Sea, Antarctica. In situ marine assemblages were documented in at least three of the six lithostratigraphic units, and it is likely that the remaining three interbedded diamicton units are also marine in origin. Peak foraminiferal diversities are documented in Unit 3.1 (73 species) and Unit 2.2 (32 species). Calcareous benthics dominate the assemblages, but may be accompanied by abundant occurrences of the planktonic Neogloboquadrina pachyderma. Low diversity agglutinated faunas appear in the uppermost strata of Units 4.1 and 2.2. A close relationship between lithofacics and foraminiferal biofacies points to marine environments that alternated between proximity to and distance from active glaciers and iceshelf fronts, with associated variations in salinity, sea-surface ice cover and the levels of rainout from debris-laden ice.
Resumo:
An 823 m thick glaciomarine Cenozoic section sitting unconformably on the Lower Devonian Beacon Supergroup was recovered in CRP-3. This paper reviews the chronostratigraphical constraints for the Cenozoic section. Between 3 and 480.27 mbsf 23 unconformity bounded cycles of sediment were recorded. Each unconformity is thought to represent a hiatus of uncertain duration. Four magnetozones have been recognised from the Cenozoic section. The record is complex with several 'tiny wiggles'' recorded throughout. Biostratigraphical or Sr ages, which could be used to link these magnetozones to the magnetic polarity time scale are restricted to the upper 190 m of sediment. Two diatom datums (Cavitatus jouseanus at 48.9 mbsf and Rhizosolenica antarctica at 68.60 mbsf), together with five Sr-isotope dates derived from molluscan fragments taken from between 10.88 and 190.29 mbsf indicate an early Oligocene (c. 31 Ma) age for this interval. The appearance of a new species of the bivalve ?Adamussium at about 325 mbsf, suggests that the Oligocene age can be extended down to this level. This confirms that the dominantly reversed magnetozone (RI), recorded down to about 340 mbsf, is Chron C12r. The ages imply high sedimentation rates and only minimal time gaps at the sequence boundaries. Below 340 mbsf there are no independent datums to guide the correlation of the magnetozones to the magnetic polarity time scale. However, the absence of in situ dinocysts attributable to Transantarctic Flora, if not a result of environmental control, limits the age of the base of the hole to between c. 33.5 and 35 Ma.
Resumo:
Live (Rose Bengal stained) and dead benthic foraminiferal communities (hard-shelled species only) from the Pakistan continental margin oxygen minimum zone (OMZ) have been studied in order to determine the relation between faunal composition and the oxygenation of bottom waters. During R.R.S. Charles Darwin Cruises 145 and 146 (12 March to May 28 2003), 11 multicores were taken on the continental margin off Karachi, Pakistan. Two transects were sampled, constituting a composite bathymetric profile from 136 m (above the OMZ in spring 2003) down to 1870 m water depth. Cores (surface area 25.5 cm2) were processed as follows: for stations situated above, and in the upper part of the OMZ, sediment slices were taken for the 0-0.5 and 0.5-1 cm intervals, and then in 1 cm intervals down to 10 cm. For the lower part of the OMZ, the second centimetre was also sliced in half-centimetre intervals. Each sample was stored in 10 % borax-buffered formalin for further processing. Onshore, the samples were wet sieved over 63 µm, 150 µm and 300 µm sieves and the residues were stained for one week in ethanol with Rose Bengal. After staining, the residue was washed again. The stained faunas were picked wet in three granulometric fractions (63-150 µm, 150-300 µm and >300 µm), down to 10 cm depth. To gain more insight into the population dynamics we investigated the dead (unstained) foraminifera in the 2-3 cm level for the fractions 150-300 µm and >300 µm. The fractions >300 µm and 150-300 µm show nearly the same faunal distribution and therefore the results are presented here for both fractions combined (i.e. the >150 µm fraction). Live foraminiferal densities show a clear maximum in the first half centimetre of the sediment; only few specimens are found down to 4 cm depth. The faunas exhibit a clear zonation across the Pakistan margin OMZ. Down to 500 m water depth, Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata dominate the assemblages. These taxa are largely restricted to the upper cm of the sediment. They are adapted to the very low bottom-water oxygen values (ab. 0.1 ml/l in the OMZ core) and the extremely high input of organic carbon on the upper continental slope. The lower part of the OMZ is characterized by cosmopolitan faunas, containing also some taxa that in other areas have been described in deep infaunal microhabitats.
Resumo:
The most direct method of investigating past variations of the atmospheric CO2 concentration before 1958, when continuous direct atmospheric CO2 measurements started, is the analysis of air extracted from suitable ice cores. Here we present a new detailed CO2 record from the Dronning Maud Land (DML) ice core, drilled in the framework of the European Project for Ice Coring in Antarctica (EPICA) and some new measurements on a previously drilled ice core from the South Pole. The DML CO2 record shows an increase from about 278 to 282 parts per million by volume (ppmv) between ad 1000 and ad 1200 and a fairly continuous decrease to a mean value of about 277 ppmv around ad 1700. While the new South Pole measurements agree well with DML at the minimum at ad 1700 they are on average about 2 ppmv lower during the period ad 1000-1500. Published measurements from the coastal high-accumulation site Law Dome are considered as very reliable because of the reproducibility of the measurements, high temporal resolution and an accurate time scale. Other Antarctic ice cores could not, or only partly, reproduce the pre-industrial measurements from Law Dome. A comparison of the trends of DML and Law Dome shows a general agreement. However we should be able to rule out co-variations caused by the same artefact. Two possible effects are discussed, first production of CO2 by chemical reactions and second diffusion of dissolved air through the ice matrix into the bubbles. While the first effect cannot be totally excluded, comparison of the Law Dome and DML record shows that dissolved air diffusing to bubbles cannot be responsible for the pre-industrial variation. Therefore, the new record is not a proof of the Law Dome results but the first very strong support from an ice core of the Antarctic plateau.
Resumo:
During the Indian Ocean Expedition of the German research vessel "Meteor" and the following cruise with the Pakistani fishing vessel "Machhera" in February and March 1965, sediments were sampled from the shelf, continental slope and the Arabian Basin off Pakistan and India. The biostratigraphic studies are based on sedimentary material from 24 sediment cores up to 480 cm long and 100 grab samples. The faunal residues of the > 160 µ fraction (chiefly foraminifera and pteropods) were determined and counted in order to get an idea of the climatic conditions during the Late Quaternary of this region. Biostratigraphic correlations of these Late Quaternary deposits are only possible if the thanatocoenosis of the surface sediments are well known. The analysis of the benthonic foraminiferal populations resulted in the definition of several foraminiferal facies. The following sequence of forarniniferal facies, named after their most characteristic members, can be distinguished from the shelf to the deep-sea: 1. Ammonia-Florilus facies ; 2. Ammonia-Cancris facies; 3. Cassidulina-Cibicides facies; 4. Uvigerina-Cassidulina facies ; 5. Buliminacea facies ; 6. deepwater facies, partly with Bulimina aculeata or with Nonionidae. On the upper continental slope there is a zone extremely poor in benthonic foraminifera. In this water depth the oxygen minimum layer (0.05-0.02 ml/l) of the water column reaches the slope. Almost no connection can be observed between the living and the dead foraminiferal population of the same sample. The regional distribution of the planktonic foraminifera from plankton tows as well as from the surface sediments shows marked differences in the species composition of faunas from different regions within the area of investigation. That depends on oceanographic conditions such as upwelling, dissolution of carbonate at great depths etc. Based on the results of faunal analysis of samples from the recent sea-floor, a biostratigraphic subdivision of the sediments in the cores was established. The following biostratigraphically defined sections could be distinguished from the top of the sediment cores downwards : 1. Relatively cool climatic conditions are reflected by the foraminifera of the uppermost core sections. 2. The next section is characterized by much warmer conditions (Holocene climatic optimum). The C-14 ages of this interval range from 4000 to 10 000 years B.P. according to different authors. C-14 dates on the material investigated do not give reliable clues. 3. Foraminiferal populations adapted to much colder conditions can be observed in the underlying core section. The boundary between the warm climate reflected by the foraminifera of section 2 and the cold climate (section 3) is relatively sharp. It can be correlated from core to core over the whole area investigated. The cold climate sediments of section 3 are underlain by different cool-, warm- and cold-climate sediments which can only be correlated over very short distances. Since it appears certain that the last really cold conditions ended earlier in the Arabian Sea and its vicinity than in Europe it is recommended not to use the European stratigraphic terms for the Quaternary. Because of the lack of reliable absolute sediment ages for the cores no exact sedimentation rates can be given. According to rough estimates, however, the rates are 1-2 cm/1000 years in the deep basin and up to 40 cm/1000 years on the upper continental slope. Sedimentation rates are always larger near the mouth of the Indus-River than off South India at stations of about the same water depth. Planktonic gastropods (mainly pteropods) cannot be used for biostratigraphic purposes in the region under consideration. All of them seem to be displaced from the shelf. Their distribution there is given in.
Resumo:
Late Holocene laminated sediments from a core transect centred in the oxygen minimum zone (OMZ) impinging at the continental slope off Pakistan indicate stable oxygen minimum conditions for the past 7000 calendar years. High SW-monsoon-controlled biological productivity and enhanced organic matter preservation during this period is reflected in high contents of total organic carbon (TOC) and redox-sensitive elements (Ni, V), as well as by a low-diversity, high-abundance benthic foraminiferal Buliminacea association and high abundance of the planktonic species Globigerina bulloides indicative of upwelling conditions. Surface-water productivity was strongest during SW monsoon maxima. Stable OMZ conditions (reflected by laminated sediments) were found also during warm interstadial events (Preboreal, Bølling-Allerød, and Dansgaard-Oeschger events), as well as during peak glacial times (17-22.5 ka, all ages in calendar years). Sediment mass accumulation rates were at a maximum during the Preboreal and Younger Dryas periods due to strong riverine input and mobilisation of fine-grained sediment coinciding with rapid deglacial sea-level rise, whereas eolian input generally decreased from glacial to interglacial times. In contrast, the occurrence of bioturbated intervals from 7 to 10.5 ka (early Holocene), in the Younger Dryas (11.7-13 ka), from 15 to 17 ka (Heinrich event 1) and from 22.5 to 25 ka (Heinrich event 2) suggests completely different conditions of oxygen-rich bottom waters, extremely low mass and organic carbon accumulation rates, a high-diversity benthic fauna, all indicating lowered surface-water productivity. During these intervals the OMZ was very poorly developed or absent and a sharp fall of the aragonite compensation depth favoured the preservation of pteropods. The abundance of lithogenic proxies suggests aridity and wind transport by northwesterly or northeasterly winds during these periods coinciding with the North Atlantic Heinrich events and dust peaks in the Tibetan Loess records. The correlation of the monsoon-driven OMZ variability in the Arabian Sea with the rapid climatic fluctuations in the high northern latitudes suggests a close coupling between the climates of the high and low latitudes at a global scale.
Resumo:
Fifteen surface sediment samples from the Pakistan shelf and upper continental slope and a Late Quaternary high-sedimentation rate core (573 m water depth, Pakistan continental margin) have been analysed to improve the understanding of the factors influencing pteropod preservation. The aragonite compensation depth (ACD) is located at 250-400 m water depth, which corroborates previous observations of a very shallow ACD in the northern Arabian Sea. With the exception of the Hab transect off Karachi, the ACD coincides with the upper boundary of the OMZ located at 250 m water depth. The shell preservation index of the pteropod Limacina inflata (LDX) was applied on six surface sediment samples showing good to very good preservation (LDX: 2.2 to 1.3). The 30 000 yr long record of sediment core SO90 137KA is characterized by alternations between bioturbated and laminated sediments. Bioturbated sediments occurring in the Early Holocene, Younger Dryas and time-equivalents of Heinrich events contain well to perfectly preserved tests of L. inflata (LDX: 2.1-0.2), whereas only traces of pteropods are found in laminated intervals. The close linkage of pteropod preservation in the surface sediments and in core 137KA to well-oxygenated conditions can be explained by repetitive intermediate water formation in the Arabian Sea down to at least 600 m water depth in times of enhanced NE monsoons during stadials and H-equivalents. Low amounts of pteropods in laminated sediments (interstadials, Late Holocene) and in the present-day oxygen minimum zone (OMZ) indicate a weak NE monsoon, stable OMZ and shallow ACD.
Resumo:
This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the delta13C data and in the abundances of C31 and C33 n-alkanes, and the C32 n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative importance of C4 plant indicators is higher during the glacials than in the interglacials, indicating a northward extension of arid zones favoring grass vegetation. In the south, where grass-rich vegetation merges into semidesert and desert, the difference in C4 plant indicators is small.
Resumo:
A multiparameter investigation including organic carbon, carbonate, opal, and planktic foraminifera was carried out on five sediment cores from the coastal upwelling area between 24°S and 33°S along the Peru-Chile Current to reconstruct the history of the paleoproductivity and its driving mechanisms during the last 40,000 years. Inferred from our data, we conclude that the Antarctic Circumpolar Current as the main nutrient source in this region mainly drives the productivity by its latitudinal shifts associated with climate change. Simplified, its northerly position during the last glacial led to enhanced productivities, and its southerly position during the Holocene caused lower productivities. At 33°S the paleoproductivity was additionally affected by the southern westerlies and records highest levels during the Last Glacial Maximum (LGM). North of 33°S, several factors (e.g., position and strength of the South Pacific anticyclone, wind stress, continental runoff, and El Niño Southern Oscillation events) supplementary influenced upwelling and paleoproductivity, where maximum values occurred prior to the LGM and during the deglaciation.
Resumo:
In this study, we present grain-size distributions of the terrigenous fraction of two deep-sea sediment cores from the SE Atlantic (offshore Namibia) and from the SE Pacific (offshore northern Chile), which we 'unmix' into subpopulations and which are interpreted as coarse eolian dust, fine eolian dust, and fluvial mud. The downcore ratios of the proportions of eolian dust and fluvial mud subsequently represent paleocontinental aridity records of southwestern Africa and northern Chile for the last 120,000 yr. The two records show a relatively wet Last Glacial Maximum (LGM) compared to a relatively dry Holocene, but different orbital variability on longer time scales. Generally, the northern Chilean aridity record shows higher-frequency changes, which are closely related to precessional variation in solar insolation, compared to the southwestern African aridity record, which shows a remarkable resemblance to the global ice-volume record. We relate the changes in continental aridity in southwestern Africa and northern Chile to changes in the latitudinal position of the moisture-bearing Southern Westerlies, potentially driven by the sea-ice extent around Antarctica and overprinted by tropical forcing in the equatorial Pacific Ocean.
Resumo:
About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were ~20°C and cooled an average of ~5°C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.
Resumo:
The petrography, mineralogy and geochemistry of volcanic and subvolcanic rocks in CRP-3 core have been examined in detail in order to characterise and to compare them with volcanic and subvolcanic rocks cropping out in the Victoria Land area, and to define the clast provenance or to establish possible volcanic activity coeval with deposition. Clasts with sizes ranging from granule to boulder show geochemical and mineralogical features comparable with those of Ferrar Supergroup rocks. They display a subalkaline affinity and compositions ranging from basalts to dacite. Three different petrographic groups with distinct textural and grain size features (subophitic, intergranular-intersertal, and glassy-hyalopilitic) are recognised and are related to the emplacement/cooling mechanism. In the sand to silt fraction, the few glass shards that have been recognised are strongly altered: however chemical analyses show they have subalkalic magmatic affinity. Mineral compositions of the abundant free clinopyroxene grains found in the core, are less affected by alteration processes, and indicate an origin from subalkaline magmas. This excludes the presence, during the deposition of CRP-3 rocks of alkaline volcanic activity comparable with the McMurdo Volcanic Group. Strong alteration of the magmatic body intruded the Beacon sandstones obliterates the original mineral assemblage. Geochemical investigations confirm that intrusion is part of the Ferar Large Igneous Province.
Resumo:
Cape Roberts Project drill core 2/2A was obtained from Roberts Ridge, a sea-floor high located at 77° S, 16 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 624 m long and includes strata dated as being Quaternary, Pliocene, Miocene and Oligocene in age. The core includes twelve facies commonly occurring in associations that are repeated in particular sequences throughout the core and which are interpreted as representing different depositional environments through time. Depositional systems inferred to be represented in the succession include: outer shelf with minor iceberg influence, outer shelf-inner shelf-nearshore to shoreface under iceberg influence, deltaic and/or grounding-line fan, and ice proximal-ice marginal-subglacial (mass flow/rainout diamictite/subglacial till) singly or in combination. Changes in palaeoenvironmental interpretations up the core are used to estimate relative glacial proximity to the site through time. These inferred glacial fluctuations are then compared with the global eustatic sea level and d18O curves to evaluate the potential of glacial fluctuations on Antarctica influencing these records of global change. Although the comparisons are tentative at present, the records do have similarities, but there are also some differences especially in possible number (and perhaps magnitude) of glacial fluctuations that require further evaluation.
Resumo:
The site for CRP-2, 14 km east of Cape Roberts (77.006°S; 163.719°E), was selected to overlap the early Miocene strata cored in nearby CRP-1, and to sample deeper into the east-dipping strata near the western margin ofe he Victoria Land Basin to investigate Palaeogene climatic and tectonic history. CRP-2 was cored from 5 to 57 mbsf (metres below the sea floor) (core recovery 91 %), with a deviation resulting in CRP-2A being cored at the same site. CRP-2A reached down to 624mbsf (recovery 95%), and to strata with an age of c. 33-35 Ma. Drilling took place from 16 October to 25 November 1998, on 2.0-2.2 m of sea ice and through 178 m of water. Core fractures and other physical properties, such as sonic velocity, density and magnetic susceptibility, were measured throughout the core. Down-hole logs for these and other properties were run from 63 to 167 mbsf and subsequently from 200 to 623 mbsf, although density and velocity data could be obtained only to 440 mbsf because of hole collapse. Sonic velocity averages c. 2.0 km S-1 for the upper part of the hole, but there is an sharp increase to c. 3.0 km s-1 and also a slight angular unconformity, at 306 mbsf, corresponding most likely to the early/late Oligocene boundary (c. 28-30 Ma). Velocity then increases irregularly to around 3.6 km s-1 at the bottom of the hole, which is estimated to lie 120 m above the V4/V5 boundary. The higher velocities below 306 mbsf probably reflect more extensive carbonate and common pyrite cementation, in patches, nodules, bedding-parallel masses and as vein infills. Dip of the strata also increases down-hole from 3° in the upper 300 in to over 10° at the bottom. Temperature gradient is 21° k-1. Over 2 000 fractures were logged through the hole. Borehole televiewer imagery was obtained for the interval from 200 to 440 mbsf to orient the fractures for stress field analysis. Lithostratigraphical descriptions on a scale of 1:20 are presented for the full length of the core, along with core box images, as a 200 page supplement to this issue. The hole initially passed through a layer of muddy gravel to 5.5 mbsf (Lithological Sub-Unit or LSU 1.1), and then into a Quaternary diatom-bearing clast-rich diamicton to 21 mbsf (LSU 2. l), with an interval of alternating compact diamicton and loose sand, and containing a rich Pliocene foraminiferal fauna, to 27 mbsf (LSU 2.2). The unit beneath this (LSU 3.1) has similar physical properties (sonic velocity, porosity, magnetic susceptibility) and includes diamictites of similar character to those of LSU 2.1 and 2.2, but an early Miocene (c. 19 Ma) diatom assemblage at 28 mbsf (top of LSU 3.1) shows that this sub-unit is part of the older section. The strata beneath 27 mbsf, primary target for the project, extend from early Miocene to perhaps latest Eocene age, and are largely cyclic glacimarine nearshore to offshore sediments. They are described as 41 lithological sub-units and interpreted in terms of 12 recurrent lithofacies. These are 1) mudstone, 2) inter-stratified mudstone and sandstone, 3) muddy very fine to coarse sandstone, 4) well-sorted stratified fine sandstone, 5) moderately to well-sorted, medium-grained sandstone, 6) stratified diamictite, 7) massive diamictite, 8) rhythmically inter-stratified sandstone and mudstone, 9) clast-supported conglomerate, 10) matrix-supported conglomerate, 11) mudstone breccia and 12) volcaniclastic sediment. Sequence stratigraphical analysis has identified 22 unconformity-bounded depositional sequences in pre- Pliocene strata. They typically comprise a four-part architecture involving, in ascending order, 1) a sharp-based coarse-grained unit (Facies 6,7,9 or 10), 2) a fining-upward succession of sandstones (Facies 3 and 4), 3) a mudstone interval (Facies l), in some cases coarsening upward to muddy sandstones (Facies 3), and 4) a sharp-based sandstone dominated succession (mainly Facies 4). The cyclicity recorded by the strata is interpreted in terms of a glacier ice margin retreating and advancing from land to the west, and of rises and falls in sea level. Analysis of sequence periodicity awaits afirmer chronology. However, apreliminary spectral analysis of magnetic susceptibility for a deepwater mudstone within one of the sequences (from 339 to 347 mbsf) reveals ratios between hierarchical levels that are similar to those of the three Milankovitch orbital forcing periodicities. The strata contain a wide range of fossils, the most abundant being marine diatoms. These commonly form up to 5% of the sediment, though in places the core is barren (notably between 300 and 412 mbsf). Fifty samples out of 250 reviewed were studied in detail. The assemblages define ten biostratigraphical zones, some of them based on local or as yet undescribed forms. The assemblages are neritic, and largely planktonic, suggesting that the sea floor was mostly below the photic zone throughout deposition of the corcd sequence. Calcareous nannofossils, representing incursions of ocean surface waters, are much less common (72 out of 183 samples examined) and restricted to mudstone intervals a few tens of metres thick, but are important for dating. Foraminifera are also sparse (73 out of 135 samples) and represented only by calcareous benthic species. Changing assemblages indicate a shift from inshore environments in the early Oligocenc to outer shelf in the late Oligocenc, returning to inshore in the early Miocene. Marine palynomorplis yielded large numbers of well-preserved forms from most of the 116 samples examined. The new in situ assemblagc found last year in CRP-1 is extended down into the late Oligocene and a further new assemblage is found in the early Oligoccnc. Many taxa are new, and cannot us yet contribute to an improved understanding of chronology or ecology. Marine invertebrate macrofossils, mostly molluscs and serpulid tubes, are scattered throughout the core. Preservation is good in mudstones but poor in other lithologies. Climate on land is reflected in the content of terrestrial palynomorphs, which are extremely scarce down to c. 300 mbsf. Some forms are reworked, and others represent a low growing sparse tundra with at least one species of Nothofagus. Beneath this level, a significantly greater diversity and abundance suggests a milder climate and a low diversity woody vegetation in the early Oligocene, but still far short of the richness found in known Eocene strata of the region. Sedimentary facies in the oldest strata also suggest a milder climate in the oldest strata cored, with indications of substantial glacial melt-water discharges, but are typical of a coldcr climate in late Oligocene and early Miocene times. Clast analyses from diamictites reveal weak to random fabrics, suggesting either lack of ice-contact deposition or post-depositional modification, but periods when ice grounded at the drill site are inferred from thin zones of in-situ brecciated rock and soft-sediment folding. These are more common above c. 300 mbsf, perhaps reflecting more extensive glacial advances during deposition of those strata. Erosion of the adjacent Transantarctic Mountains through Jurassic basalt and dolerite-intruded Beacon strata into basement rocks beneath is recorded by petrographical studies of clast and sand grain assemblages. Core below 310 mbsf contains a dominance of fine-grained Jurassic dolerite and basalt fragments along with Beacon-derived coal debris and rounded quartz grains, whereas the strata above this level have a much higher proportion of basement derived granitoids, implying that the large areas of the adjacent mountains had been eroded to basement by the end of the early Oligocene. There is little indication of rift-related volcanism below 310 mbsf. Above this, however, basaltic and trachytic tephras are common, especially from 280 to 200 mbsf, from 150 to 46 mbsf, and in Pliocene LSU 2.2 from 21 to 27 mbsf. The largest volcanic eruptions generated layers of coarse (up to 1 cm) trachytic pumice lapilli between 97 and 114 mbsf. The thickest of these (1.2 m at 112 mbsf) may have produced an eruptive column extending tens of km into the stratosphere. A source within a few tens of km of the drill site is considered most likely. Present age estimates for the pre-Pliocene sequence are based mainly on biostratigraphy (using mainly marine diatoms and to a lesser extent calcareous nannofossils), with the age of the tephra from 112 to 114 mbsf (21.44k0.05 Ma from 84 crystals by Ar-Ar) as a key reference point. Although there are varied and well-preserved microfossil assemblages through most of the sequence (notably of diatoms and marine palynomorphs), they comprise largely taxa either known only locally or as yet undescribed. In addition, sequence stratigraphical analysis and features in the core itself indicate numerous disconformities. The present estimate from diatom assemblages is that the interval from 27 to 130 mbsf is early Miocene in age (c. 19 to 23.5 Ma), consistent with the Ar-Ar age from 112 to 114 mbsf. Diatom assemblages also indicate that the late Oligocene epoch extends from c. 130 to 307 mbsf, which is supported by late Oligocene nannofossils from 130 to 185 mbsf. Strata from 307 to 412 mbsf have no age-diagnostic assemblages, but below this early Oligocene diatoms and nannofossils have been recovered. A nannoflora at the bottom of the hole is consistent with an earliest Oligocene or latest Eocene age. Magnetostratigraphical studies based on about 1000 samples, 700 of which have so far undergone demagnetisation treatment, have provided a polarity stratigraphy of 12 pre-Pliocene magnetozones. Samples above 270 mbsf are of consistently high quality. Below this, magnetic behaviour is more variable. A preliminary age-depth plot using the Magnetic Polarity Time Scale (MPTS) and constrained by biostratigraphical data suggests that episodes of relatively rapid sedimentation took place at CRP-2 during Oligocene times (c. 100 m/My), but that more than half of the record was lost in a few major and many minor disconformities. Age estimates from Sr isotopes in shell debris and further tephra dating are expected to lead to a better comparison with the MPTS. CRP-2/2A has recorded a history of subsidence of the Victoria Land Basin margin that is similar to that found in CIROS-170 km to the south, reflecting stability in both basin and the adjacent mountains in late Cenozoic times, but with slow net accumulation in the middle Cenozoic. The climatic indicators from both drill holes show a similar correspondence, indicating polar conditions for the Quaternary but with sub-polar conditions in the early Miocene-late Oligocene and indications of warmer conditions still in the early Oligocene. Correlation between the CRP-2A core and seismic records shows that seismic units V3 and V4, both widespread in the Victoria Land Basin, represent a period of fluctuating ice margins and glacimarine sedimentation. The next drill hole, CRP-3, is expected to core deep into V5 and extend this record of climate and tectonics still further back in time.
Resumo:
Marine sediment cores from the continental slope off mid-latitude Chile (33°S) were studied with regard to grain-size distributions and clay mineral composition. The data provide a 28,000-yr14C accelerator mass spectrometry-dated record of variations in the terrigenous sediment supply reflecting modifications of weathering conditions and sediment source areas in the continental hinterland. These variations can be interpreted in terms of the paleoclimatic evolution of mid-latitude Chile and are compared to existing terrestrial records. Glacial climates (28,000-18,000 cal yr B.P.) were generally cold-humid with a cold-semiarid interval between 26,000 and 22,000 cal yr B.P. The deglaciation was characterized by a trend toward more arid conditions. During the middle Holocene (8000-4000 cal yr B.P.), comparatively stable climatic conditions prevailed with increased aridity in the Coastal Range. The late Holocene (4000-0 cal yr B.P.) was marked by more variable paleoclimates with generally more humid conditions. Variations of rainfall in mid-latitude Chile are most likely controlled by shifts of the latitudinal position of the Southern Westerlies. Compared to the Holocene, the southern westerly wind belt was located significantly farther north during the last glacial maximum. Less important variations of the latitudinal position of the Southern Westerlies also occurred on shorter time scales.