139 resultados para West (U.S.)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interval between 488.2 and 513.7 m below seafloor at Deep Sea Drilling Project (DSDP) Site 615 is interpreted as a single carbonate gravity-flow deposit. The deposit has characteristics of both a debris flow and a high-density turbidity current. Comparison of the sedimentary constituents in 15 samples from this site with samples from 26 core tops from the upper West Florida continental slope and eastern Mississippi Fan shows many similarities. Shallow-water indicators, such as mollusk and echinoid fragments, occur in both suites of samples. The West Florida continental margin, therefore, is a potential provenance area. The Yucatan slope is also a possible source, but data from it are limited. The recognition of carbonate gravity-flow deposits intercalated within the Mississippi Fan refines our understanding of Pleistocene sedimentation within the Gulf basin. Deposition in the deep Gulf is dominated by the construction of the Mississippi Fan. However, this marine terrigenous depocenter is located between two large carbonate depocenters, the West Florida continental margin on the east and the Yucatan peninsula on the southwest. Periodically, the carbonate slope in these two regions fails, injecting carbonate gravity flows into the accreting terrigenous deep-sea fan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water depth zonation of fifty nine benthonic foraminiferal species in marine sediment surfaces has been described. Some species are combined to groups which mark particular depth zones: an upper and lower shelf-fauna, an upper and lower slope fauna, and a shelf-slope fauna. Dependence on latitude could be ascertained for Textularia panamensis, and submergence effects for Hyalinea balthica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High- to very-high-grade migmatitic basement rocks of the Wilson Hills area in northwestern Oates Land (Antarctica) form part of a low-pressure high-temperature belt located at the western inboard side of the Ross-orogenic Wilson Terrane. Zircon, and in part monazite, from four very-high grade migmatites (migmatitic gneisses to diatexites) and zircon from two undeformed granitic dykes from a central granulite-facies zone of the basement complex were dated by the SHRIMP U-Pb method in order to constrain the timing of metamorphic and related igneous processes and to identify possible age inheritance. Monazite from two migmatites yielded within error identical ages of 499 +/- 10 Ma and 493 +/- 9 Ma. Coexisting zircon gave ages of 500 +/- 4 Ma and 484 +/- 5 Ma for a metatexite (two age populations) and 475 +/- 4 Ma for a diatexite. Zircon populations from a migmatitic gneiss and a posttectonic granitic dyke yielded well-defined ages of 488 +/- 6 Ma and 482 +/- 4 Ma, respectively. There is only minor evidence of age inheritance in zircons of these four samples. Zircon from two other samples (metatexite, posttectonic granitic dyke) gave scattered 206Pb-238U ages. While there is a component similar in age and in low Th/U ratio to those of the other samples, inherited components with ages up to c. 3 Ga predominate. In the metatexite, a major detrital contribution from 545 - 680 Ma old source rocks can be identified. The new age data support the model that granulite- to high-amphibolite-facies metamorphism and related igneous processes in basement rocks of northwestern Oates Land were confined to a relatively short period of time of Late Cambrian to early Ordovican age. An age of approximately 500 Ma is estimated for the Ross-orogenic granulite-facies metamorphism from consistent ages of monazite from two migmatites and of the older zircon age population in one metatexite. The variably younger zircon ages are interpreted to reflect mineral formation in the course of the post-granulite-facies metamorphic evolution, which led to a widespread high-amphibolite-facies retrogression and in part late-stage formation of ms+bi assemblages in the basement rocks and which lasted until about 465 Ma. The presence of inherited zircon components of latest Neoproterozoic to Cambrian age indicates that the high- to very-grade migmatitic basement in northwestern Oates Land originated from clastic series of Cambrian age and, therefore, may well represent the deeper-crustal equivalent of lower-grade metasedimentary series of the Wilson Terrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absolute ages of plutonic rocks from mid-ocean ridges provide important constraints on the scale, timing and rates of oceanic crustal accretion, yet few such rocks have been absolutely dated. We present 206Pb/238U SHRIMP zircon ages from two ODP Drill Holes and a surface sample from Atlantis Bank on the Southwest Indian Ridge. We report ten new sample ages from 26-1430 m in ODP Hole 735B, and one from 57 m in ODP Hole 1105A. Including a previously published age, eleven samples from Hole 735B yield 206Pb/238U zircon crystallization ages that are the same, within error, overlap with the estimated magnetic age and are inferred to date the main period of crustal growth, the average age of analyses is 11.99 ± 0.12 Ma. Any differences in the ages of magmatic series and/or tectonic blocks within Hole 735B are unresolvable and eight well-constrained ages vary from 11.86 ± 0.20 Ma to 12.13 ± 0.21 Ma, a range of 0.27 ± 0.29 Ma, consistent with the duration of crustal accretion observed at the Mid-Atlantic Ridge. An age of 11.87 ± 0.23 Ma from Hole 1105A is within error of ages from Hole 735B and permits previous correlations made between zones of oxide-rich gabbros in each hole. Pb/U zircon ages > 0.5 Ma younger than the magnetic age are recorded in at least three samples from Atlantis Bank, one from Hole 735B and two collected along a fault scarp to the East. These young ages may date one or more off-axis events previously suggested from thermochronologic data and support the interpretation of a complex geological history following crustal accretion at Atlantis Bank. Together with results from the surface of Atlantis Bank, dating has shown that while the majority of Pb/U SHRIMP zircon ages record the short-lived (< 0.5 Ma) phase of crustal accretion on-axis, results from several samples precede and post-date this period by > 1 Ma suggesting a complex and prolonged magmatic/tectonic history for the crust at Atlantis Bank.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent benthic foraminifera (> 125 µm) were investigated from multicorer samples on a latitudinal transect of 20 stations between 1°N and 32°S along the upper slope off West Africa. Samples were selected from a narrow water depth interval, between 1200 and 1500 m, so that changes in water masses are minimized, but changes in surface productivity are important and the only significant environmental variable. Live (Rose Bengal stained) benthic foraminifera were counted from the surface sediment down to a maximum of 12 cm. Dead foraminifera were investigated in the top 5 cm of the sediment only. Five live and five dead benthic foraminiferal assemblages were identified using Q-mode principal component analysis, matching distinct primary productivity provinces, characterized by different systems of seasonal and permanent upwelling. Differences in seasonality, quantity, and quality of food supply are the main controlling parameters on species composition and distribution of the benthic foraminiferal faunas. To test the sensitivity of foraminiferal studies based on the uppermost centimeter of sediment only, a comparative Q-mode principal component analysis was conducted on live and dead foraminiferal data from the top 1 cm of sediment. It has been demonstrated that, on the upper slope off West Africa, most of the environmental signals as recorded by species composition and distribution of the 'total' live and dead assemblages, i.e., including live and dead foraminifera from the surface sediment down to 12 cm and 5 cm, respectively, can be extracted from the assemblages in the top centimeter of sediment only. On the contrary, subsurface abundance maxima of live foraminifera and dissolution of empty tests strongly bias quantitative approaches based on the calculation of standing stocks and foraminiferal numbers in the topmost centimeter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The timing of sea-level change provides important constraints on the mechanisms driving Earth's climate between glacial and interglacial states. Fossil corals constrain the timing of past sea level by their suitability for dating and their growth position close to sea level. The coral-derived age for the last deglaciation is consistent with climate change forced by Northern Hemisphere summer insolation (NHI), but the timing of the penultimate deglaciation is more controversial. We found, by means of uranium/thorium dating of fossil corals, that sea level during the penultimate deglaciation had risen to ~85 meters below the present sea level by 137,000 years ago, and that it fluctuated on a millennial time scale during deglaciation. This indicates that the penultimate deglaciation occurred earlier with respect to NHI than the last deglacial, beginning when NHI was at a minimum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution study of benthic foraminiferal assemblages was performed on a ca. eight metre long sediment core from Gullmar Fjord on the west coast of Sweden. The results of 210Pb- and AMS 14C-datings show that the record includes the two warmest climatic episodes of the last 1500 years: the Medieval Warm Period (MWP) and the recent warming of the 20th century. Both periods are known to be anomalously warm and associated with positive NAO winter indices. Benthic foraminiferal successions of both periods are compared in order to find faunal similarities and common denominators corresponding to past climate changes. During the MWP, Adercotryma glomerata, Cassidulina laevigata and Nonionella iridea dominated the assemblages. Judging from dominance of species sensitive to hypoxia and the highest faunal diversity for the last ca. 2400 years, the foraminiferal record of the MWP suggests an absence of severe low oxygen events. At the same time, faunas and d13C values both point to high primary productivity and/or increased input of terrestrial organic carbon into the fjord system during the Medieval Warm Period. Comparison of the MWP and recent warming revealed different trends in the faunal record. The thin-shelled foraminifer N. iridea was characteristic of the MWP, but became absent during the second half of the 20th century. The recent Skagerrak-Kattegat fauna was rare or absent during the MWP but established in Gullmar Fjord at the end of the Little Ice Age or in the early 1900s. Also, there are striking differences in the faunal diversity and absolute abundances of foraminifera between both periods. Changes in primary productivity, higher precipitation resulting in intensified land runoff, different oxygen regimes or even changes in the fjord's trophic status are discussed as possible causes of these faunal differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ~4 µm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m**2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m**2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m**2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of past changes in biological productivity in the Subarctic North Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to examine the plasma concentrations and prevalence of polychlorinated biphenyls (PCBs) and hydroxylated PCB-metabolites (OH-PCBs) in polar bear (Ursus maritimus) mothers (n = 26) and their 4 months old cubs-of-the-year (n = 38) from Svalbard to gain insight into the mother-cub transfer, biotransformation and to evaluate the health risk associated with the exposure to these contaminants. As samplings were performed in 1997/1998 and 2008, we further investigated the differences in levels and pattern of PCBs between the two sampling years. The plasma concentrations of Sum(21)PCBs (1997/1998: 5710 ± 3090 ng/g lipid weight [lw], 2008: 2560±1500 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 228 ± 60 ng/g wet weight [ww], 2008: 80 ± 38 ng/g ww) in mothers were significantly lower in 2008 compared to in 1997/1998. In cubs, the plasma concentrations of Sum(21)PCBs (1997/1998: 14680 ± 5350 ng/g lw, 2008: 6070 ± 2590 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 98 ± 23 ng/g ww, 2008: 49 ± 21 ng/g ww) were also significantly lower in 2008 than in 1997/1998. Sum(21)PCBs in cubs was 2.7 ± 0.7 times higher than in their mothers. This is due to a significant maternal transfer of these contaminants. In contrast, Sum(6)OH-PCBs in cubs were approximately 0.53 ± 0.16 times the concentration in their mothers. This indicates a lower maternal transfer of OH-PCBs compared to PCBs. The majority of the metabolite/precursor-ratios were lower in cubs compared to mothers. This may indicate that cubs have a lower endogenous capacity to biotransform PCBs to OH-PCBs than polar bear mothers. Exposure to PCBs and OH-PCBs is a potential health risk for polar bears, and the levels of PCBs and OH-PCBs in cubs from 2008 were still above levels associated with health effects in humans and wildlife.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollen analysis of Wisconsinan sediments from eleven localities in northern and central Illinois, combined with the results of older studies, allows a first general survey of the vegetational changes in Illinois during the last glaciation. In the late Altonian (after 40,000 B.P.), pine was already the most prevalent tree type in northern Illinois. Probably because of the influence of the last Altonian ice advance to northern Illinois, pine migrated to the south and reached south-central Illinois, which was at that time a region of prairie, with oak and hickory trees in favorable sites. Likewise in the late Altonian, spruce appeared in northern Illinois. Spruce also expanded its area to the south during the Wisconsinan, reaching south-central Illinois only after 21,000 B.P., in the early Woodfordian. Deciduous trees (predominantly oak) were present in south-central Illinois throughout the Wisconsinan. Their prevalence decreased to the north. The vegetation during the different subdivisions of the last glacial period in Illinois was approximately as follows: Late Altonian: Pine/spruce forest with some deciduous trees in northern and central Illinois; prairie and oak/hickory stands in south-central Illinois; immigration of pine. Farmdalian: Pine/spruce forest in central Illinois; deciduous trees and pine in south-central Illinois, with areas of open vegetation, perhaps similar to the present-day transition of prairie to forest in the northern Great Plains. Woodfordian: Northern and central Illinois ice covered; in south central Illinois, spruce and oak as dominant tree types, but also pine and grassland. During the Woodfordian, pine and spruce disappeared again from south-central Illinois, and oak/hickory forest and prairie again prevailed. The ice-free areas of northern Illinois become populated temporarily with spruce, but later there is proof of deciduous forest in this region. Pollen investigations in south-central Illinois have shown convincingly that deciduous trees could survive relatively close (less than 60 km) to the ice margin. Therefore the frequently presented view that arctic climatic conditions prevailed in North America during the last glaciation far south of the ice margin can be refuted for the Illinois area, confirming the opinion of other authors resulting from investigations of fossil mollusks and frost-soil features. The small number of localities investigated still permits no complete reconstruction of the vegetation zones and their possible movements in Illinois. During the Altonian and Farmdalian in Illinois, a vegetational zonation probably existed similar to that of today in North America. As the ice pushed southward as far as 39° 20' N. lat in the early Woodfordian, this zonation was apparently broken up under the influence of a relatively moderate climate. In any case, the Vandalia area, which was only about 60 km south of the ice, was at that time neither in a tundra zone nor in a zone of boreal coniferous forest.