124 resultados para Walton, John, d. 1410


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution studies of a planktonic foraminifer core record from the South China Sea (SCS) (31KL: 18°45.4'N, 115°52.4'E, water depth 3360 m) reveal changes driven by ice-volume forcings in the climate of the East Asian monsoon in the western Pacific marginal sea during the late Quaternary. The analyses of planktonic foraminifer faunal abundance data from the core indicate significant variations in the relative abundances of the dominant taxa over the past 100,000 years since the isotope stage 5. The transfer function estimates of faunal sea surface temperatures (SST) correlate well with a long-term (104-105 years) trend of global glaciation. About 65,000 years ago, there was an observable change in the mode of SST variability as many low-latitude records have shown. These findings suggest that the SCS surface circulation and the East Asian winter monsoon systems are mainly driven by variations in global glaciation levels. The association of surface ocean cooling in the SCS with global climatic events suggests that fluctuations in the strength of the East Asian winter monsoon may be linked to shifts in the latitudinal position of the westerly winds and the Siberian high-pressure system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased anthropogenic CO2 emissions in the last two centuries have lead to rising sea surface temperature and falling ocean pH, and it is predicted that current global trends will worsen over the next few decades. There is limited understanding of how genetic variation among individuals will influence the responses of populations and species to these changes. A microcosm system was set up to study the effects of predicted temperature and CO2 levels on the bryozoan Celleporella hyalina. In this marine species, colonies grow by the addition of male, female and feeding modular individuals (zooids) and can be physically subdivided to produce a clone of genetically identical colonies. We studied colony growth rate (the addition of zooids), reproductive investment (the ratio of sexual to feeding zooids) and sex ratio (male to female zooids) in four genetically distinct clonal lines. There was a significant effect of clone on growth rate, reproductive investment and sex ratio, with clones showing contrasting responses to the various temperature and pH combinations. Overall, decreasing pH and increasing temperature caused reduction of growth, and eventual cessation of growth was often observed at the highest temperature, especially during the latter half of the 15-day trials. Reproductive investment increased with increasing temperature and decreasing pH, varying more widely with temperature at the lowest pH. The increased production of males, a general stress response of the bryozoan, was seen upon exposure to reduced pH, but was not expressed at the highest temperature tested, presumably due to the frequent cessation of growth. Further to the significant effect of pH on the measured whole-colony parameters, observation by scanning electron microscopy revealed surface pitting of the calcified exoskeleton in colonies that were exposed to increased acidity. Studying ecologically relevant processes of growth and reproduction, we demonstrate the existence of relevant levels of variation among genetic individuals which may enable future adaptation via non-mutational natural selection to falling pH and rising temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolution of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record ''glacial'' and ''interglacial'' modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions.