631 resultados para VOID FRACTION
Resumo:
Deep Sea Drilling Project Site 577 on Shatsky Rise (North Pacific Ocean) recovered a series of cores at three holes that contain calcareous nannofossil ooze of latest Cretaceous (late Maastrichtian) through early Eocene age. Several important records have been generated using samples from these cores, but the stratigraphy has remained outdated and confusing. Here we revise the stratigraphy at Site 577. This includes refining several age datums, realigning cores in the depth domain, and placing all stratigraphic markers on a current time scale. The work provides a template for appropriately bringing latest Cretaceous and Paleogene data sets at old drill sites into current paleoceanographic literature for this time interval. While the Paleocene Eocene Thermal Maximum (PETM) lies within core gaps at Holes 577* and 577A, the sedimentary record at the site holds other important events and remains crucially relevant to understanding changes in oceanographic conditions from the latest Cretaceous through early Paleogene.
Resumo:
How the micro-scale fabric of clay-rich mudstone evolves during consolidation in early burial is critical to how they are interpreted in the deeper portions of sedimentary basins. Core samples from the Integrated Ocean Drilling Program Expedition 308, Ursa Basin, Gulf of Mexico, covering seafloor to 600 meters below sea floor (mbsf) are ideal for studying the micro-scale fabric of mudstones. Mudstones of consistent composition and grain size decrease in porosity from 80% at the seafloor to 37% at 600 mbsf. Argon-ion milling produces flat surfaces to image this pore evolution over a vertical effective stress range of 0.25 (71 mbsf) to 4.05 MPa (597 mbsf). With increasing burial, pores become elongated, mean pore size decreases, and there is preferential loss of the largest pores. There is a small increase in clay mineral preferred orientation as recorded by high resolution X-ray goniometry with burial.
Resumo:
An additional ore field in the central part of the MARhas been discovered. Together with previously discovered Logachev (14°45'N) and Ashadze (12°58'N) ore fields, the new ore field constitutes a cluster with preliminarily estimated total ore reserve of >10 Mt, which is comparable with large continental massive sulfide deposits.