162 resultados para Time-variable gravity
Resumo:
A composite record (LO09-14) of three sediment cores from the subpolar North Atlantic (Reykjanes Ridge) was investigated in order to assess surface ocean variability during the last 11 kyr. The core site is today partly under the influence of the Irminger Current (IC), a branch of the North Atlantic Drift continuing northwestward around Iceland. However, it is also proximal to the Sub-Arctic Front (SAF) that may cause extra dynamic hydrographic conditions. We used statistical methods applied to the fossil assemblages of diatoms to reconstruct quantitative sea surface temperatures (SSTs). Our investigations give evidence for different regional signatures of Holocene surface oceanographic changes in the North Atlantic. Core LO09-14 reveal relatively low and highly variable SSTs during the early Holocene, indicating a weak IC and increased advection of subpolar water over the site. A mid-Holocene thermal optimum with a strong IC occurs from 7.5 to 5 kyr and is followed by cooler and more stable late Holocene surface conditions. Several intervals throughout the Holocene are dominated by the diatom species Rhizosolenia borealis, which we suggest indicates proximity to a strongly defined convergence front, most likely the SAF. Several coolings, reflecting southeastward advection of cold and ice-bearing waters, occur at 10.4, 9.8, 8.3, 7.9, 6.4, 4.7, 4.3 and 2.8 kyr. The cooling events recorded in the LO09-14 SSTs correlate well with both other surface records from the area and the NADW reductions observed at ODP Site 980 indicating a surface-deepwater linkage through the Holocene.
Resumo:
Stable isotope, foraminifera and ice rafted detritus (IRD) records covering the last interglacial (the Eemian) from 7 sediment cores in a transect from the Norwegian to the Greenland Sea are presented. The percentages of Neogloboquadrina pachyderma (s.) and Globigerina quinqueloba, foraminiferal content, and to some extent planktonic stable isotope records, demonstrate marked, regional changes in surface water conditions. Importantly, the variability in the abundances of subpolar foraminifera and foraminiferal content are not coherent, implying that these two types of proxies fluctuated independently of each other and most likely reflect changes in sea surface temperature and surface water carbonate productivity, respectively. Paleoceanographic reconstructions demonstrate significant movements of the oceanographic fronts. At the warmest periods, the Arctic front was located far west of the present-day location, at least within the Iceland Sea region. At 126-125 ka, this was most probably due to a stronger or more westerly located Norwegian current. Within the later warm intervals, higher heat flux to the western part of the basin reflects a combination of a stronger Irminger current and/or a weaker east Greenland current. During the main cold spell at ~124 ka, a diffuse Arctic front had a more southeasterly location than today, and intrusion of Atlantic surface waters was probably limited to a narrow corridor in the Eastern Norwegian Sea. A general correspondence between minima in sea surface temperatures and light benthic delta18O may indicate enhanced influx of freshwater to the basin within the cold events. At least in the Norwegian Sea, we find some evidence that the changes in surface water conditions are associated with changes in deep water ventilation. The majority of the fluctuations may be related to occasional breakdown or reduction of the thermohaline circulation within the Nordic seas. In the earliest Eemian, this could result from meltwater forcing. During the remaining part of the last interglacial the fine balance between temperature and salinity, which the deep water formation is depending on, may have been disturbed by periodic increases in fresh water supply or variable influx of warm Atlantic surface waters.
Resumo:
Within generally calcareous sediment sequences, layers of variable thickness of the giant diatom Ethmodiscus were found in five cores recovered in the Subtropical South Atlantic between 23° and 33°S from both sides of the Mid-Atlantic Ridge. Two types of oozes occur: (almost) monospecific layers of Ethmodiscus and layers dominated by Ethmodiscus, with several accompanying tropical/subtropical, oligotrophic-water diatoms. The two thickest Ethmodiscus layers occur in GeoB3801-6 around 29°S, and accumulated during late MIS 14 and MIS 12, respectively. Downcore concentrations of Ethmodiscus valves range between 3.4 10 4 and 2.3 10 7 valves g -1. We discuss the ooze formation in the context of migration of frontal systems and changes in the thermohaline circulation. The occurrence of Ethmodiscus oozes in sediments underlying the present-day pelagic, low-nutrient waters is associated with a terminal event of the Mid-Pleistocene Transition at around 530 ka, when the ocean circulation rearranged after a period of reduced NADW production.
Resumo:
The neodymium isotopic composition of the silicate fraction of Holocene pelagic sediments from the North Pacific define two provinces: a central North Pacific province characterized by unradiogenic and remarkably homogeneous end (-10.2 +/- 0.5) and a narrow circum-Pacific marginal province characterized by more radiogenic and variable end (-4.2 +/- 3.8). The silicate fraction in the central North Pacific is exclusively eolian; based on prevailing wind patterns, meteorological data, and neodymium isotopic data, the only significant sediment source is Chinese loess. Leaching experiments on Chinese loess confirm that leachable Nd is isotopically indistinguishable from bulk and residual silicate Nd. Silicates in the circum-North Pacific marginal province comprise eolian loess, volcanic ash, and hemipelagic sediments derived from volcanic arcs. A compilation of Pacific seawater and Mn nodule epsilon-Nd data shows no clear spatial variation except for a general decrease from surface to deep waters from -3 to -4 and slightly lower epsilon-Nd in bottom waters along the western North Pacific due to the incursion of Antarctic Bottom Water. The relative homogeneity of bottom water epsilon-Nd, which contrasts sharply with the distinctive variation in sediment epsilon-Nd, plus the large difference between the average end of bottom waters and the central North Pacific eolian silicates (-4 vs. -10), suggests that any contribution of REE to seawater from eolian materials is insignificant. Furthermore, leaching of REE from eolian particles as they sink though the water column must be insignificant because Nd in shallow waters is more radiogenic than Nd in deeper waters. That there is no contrast in the Nd isotopic composition of bottom waters that overlie the central and marginal sediment provinces suggests that the ash and hemipelagic sediments derived from Pacific rim volcanic arcs also contribute minimal REE to seawater. The elimination of eolian, ash, and hemipelagic sediments leaves only near-shore riverine particulates as a possibly significant particulate source of REE to seawater.
Resumo:
Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.
Grain size and description on gravity core samples from ANT-IV/2 expedition to the Bransfield Strait
Resumo:
From the above and the grafical results it can be concluded that cores in the research area are locally dominated by turbiditic sequences, which can be observed by a strong increase in coarser sediment (>35 µm). These coarser intercalations are lacking in the vicinity of basaltic seamounts, probably due to a shadowing effect of the seamounts. The infill of the King George Basin might be dominated by a north eastern current. Sedimentary structures as observed in the cores are often lacking or vague due to hydrothermal effects (Suess, L, 1986).
Resumo:
The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottomwater production today. However, little is known about bottom-water production under different climate and icesheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005, doi:10.1111/j.1365-3091.2005.00715.x) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium-to-coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, Fe, Ti, Rb, and K are elevated. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity during the LGM. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. Under these conditions, lighter coarser-grained layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom-water formation and increased sediment transport. Vice versa, darker finer-grained layers were then deposited during less windier season, mainly during summer, when coastal polynya activity was likely reduced.
Resumo:
Oligocene to Quaternary sediments were recovered from the Antarctic continental margin in the eastern Weddell Sea during ODP Leg 113 and Polarstern expedition ANT-VI. Clay mineral composition and grain size distribution patterns are useful for distinguishing sediments that have been transported by ocean currents from those that were ice-rafted. This, in turn, has assisted in providing insights about the changing late Paleogene to Neogene sedimentary environment as the cryosphere developed in Antarctica. During the middle Oligocene, increasing glacial conditions on the continent are indicated by the presence of glauconite sands, that are interpreted to have formed on the shelf and then transported down the continental slope by advancing glaciers or as a result of sea-level lowering. The dominance of illite and a relatively high content of chlorite suggest predominantly physical weathering conditions on the continent. The high content of biogenic opal from the late Miocene to the late Pliocene resulted from increased upwelling processes at the continental margin due to increased wind strength related to global cooling. Partial melting of the ice-sheet occurred during an early Pliocene climate optimum as is shown by an increasing supply of predominantly current-derived sediment with a low mean grain size and peak values of smectite. Primary productivity decreased at ~ 3 Ma due to the development of a permanent sea-ice cover close to the continent. Late Pleistocene sediments are characterized by planktonic foraminifers and biogenic opal, concentrated in distinct horizons reflecting climatic cycles. Isotopic analysis of AT. pachyderma produced a stratigraphy which resulted in a calculated sedimentation rate of 1 cm/k.y. during the Pleistocene. Primary productivity was highest during the last three interglacial maxima and decreased during glacial episodes as a result of increasing sea-ice coverage.
Resumo:
The research cruise SO79 with RV SONNE (April 18 to June 09 1992) aimed to assess the impact of a potential mining activity on the sensitive deep-sea ecosystem of the Peru Basin. Up to now only results of reconnaissance surveys of the extended manganese nodule field discovered in 1978 in the Peru Basin are available. The hydroacoustic, sedimentological, and geochemical studies on data and sample material of SO79 came to the following results: a small-scaled variation in thickness respectively type of surface sediments shown by the sediment echosounder respectively the side-scan-sonar is assumably due to variations in deposition or erosion. The composition of sediments is controlled by climatic cycles of different length which were caused by the variable influence of glaciation of the northern hemisphere. We think that during the quaternary a deep-water circulation reduced in intensity and O2-content may have produced a suboxic diagenetic environment which led to a remobilization and redeposition of Mn forming manganese nodules in the oxic surface sediments. Near the distinct redox boundary at about 10 cm depth the growth conditions for nodules are extremely favourable. Due to the great variability of sediments the impact of deep-sea mining will be highly variable and the disturbance of the seafloor will change the ecosystem considerably.
Resumo:
Hydrogen isotope values (dD) of sedimentary terrestrial leaf wax such as n-alkanes or n-acids have been used to map and understand past changes in rainfall amount in the tropics because dD of precipitation is commonly assumed as the first order controlling factor of leaf wax dD. Plant functional types and their photosynthetic pathways can also affect leaf wax dD but these biological effects are rarely taken into account in paleo studies relying on this rainfall proxy. To investigate how biological effects may influence dD values we here present a 37,000-year old record of dD and stable carbon isotopes (d13C) measured on four n-alkanes (n-C27, n-C29, n-C31, n-C33) from a marine sediment core collected off the Zambezi River mouth. Our paleo d13C records suggest that each individual n-alkanes had different C3/C4 proportional contributions. n-C29 was mostly derived from a C3 dicots (trees, shrubs and forbs) dominant vegetation throughout the entire record. In contrast, the longer chain n-C33 and n-C31 were mostly contributed by C4 grasses during the Glacial period but shifted to a mixture of C4 grasses and C3 dicots during the Holocene. Strong correlations between dD and d13C values of n-C33 (correlation coefficient R2 = 0.75, n = 58) and n-C31 (R2 = 0.48, n = 58) suggest that their dD values were strongly influenced by changes in the relative contributions of C3/C4 plant types in contrast to n-C29 (R2 = 0.07, n = 58). Within regions with variable C3/C4 input, we conclude that dD values of n-C29 are the most reliable and unbiased indicator for past changes in rainfall, and that dD and d13C values of n-C31 and n-C33 are sensitive to C3/C4 vegetation changes. Our results demonstrate that a robust interpretation of palaeohydrological data using n-alkane dD requires additional knowledge of regional vegetation changes from which nalkanes are synthesized, and that the combination of dD and d13C values of multiple n-alkanes can help to differentiate biological effects from those related to the hydrological cycle.