198 resultados para Surface Site Structures
Resumo:
Uk'37 sea-surface temperature (SST) estimates obtained at ~2.5-k.y. resolution from Ocean Drilling Program Site 1020 show glacial-interglacial cyclicity with an amplitude of 7°-10°C over the last 780 k.y. This record shows a similar pattern of variability to another alkenone-based SST record obtained previously from the Santa Barbara Basin. Both records show that oxygen isotope Stage (OIS) 5.5 was warmer by ~3°C relative to the present and that glacial Uk'37 temperatures warm in advance of deglaciation, as inferred from benthic d18O records. The alkenone-based SST record at Site 1020 is longer than previously published work along the California margin. We show that warmer than present interglacial stages have occurred frequently during the last 800 k.y. Alkenone concentrations, a proxy for coccolithophorid productivity, indicate that sedimentary marine organic carbon content has also varied significantly over this interval, with higher contents during interglacial periods. A baseline shift to warmer SST and greater alkenone content occurs before OIS 13. We compare our results with those from previous multiproxy studies in this region and conclude that SST has increased by ~5°C since the last glacial period (21 ka). Our data show that maximum alkenone SSTs occur simultaneously with minimum ice volume at Site 1020, which is consistent with data from farther south along the margin. The presence of sea ice in the glacial northeast Pacific, the extent of which is inferred from locations of ice-rafted debris, provides further support for our notion of cold surface water within the northern California Current system, averaging 7°-8°C cooler during peak glacial conditions. The cooling of surface water during glacial stages most likely did not result from enhanced upwelling because alkenone concentrations and terrestrial redwood pollen assemblages are consistently lower during glacial periods.
Resumo:
A submillennial resolution, radiolarian-based record of summer sea surface temperature (SST) documents the last five glacial to interglacial transitions at the subtropical front, southern Atlantic Ocean. Rapid fluctuations occur both during glacial and interglacial intervals, and sudden cooling episodes at glacial terminations are recurrent. Surface hydrography and global ice volume proxies from the same core suggest that summer SST increases prior to terminations lead global ice-volume decreases by 4.7 ± 3.7 ka (in the eccentricity band), 6.9 ± 2.5 ka (obliquity), and 2.7 ± 0.9 ka (precession). A comparison between SST and benthic delta13C suggests a decoupling in the response of northern subantarctic surface, intermediate, and deep water masses to cold events in the North Atlantic. The matching features between our SST record and the one from core MD97-2120 (southwest Pacific) suggests that the super-regional expression of climatic events is substantially affected by a single climatic agent: the Subtropical Front, amplifier and vehicle for the transfer of climatic change. The direct correlation between warmer DeltaTsite at Vostok and warmer SST at ODP Site 1089 suggests that warmer oceanic/atmospheric conditions imply a more southward placed frontal system, weaker gradients, and therefore stronger Agulhas input to the Atlantic Ocean.
Resumo:
Shipboard examination of volcanic and sedimentary strata at Site 786 suggested that at least four types of breccias are present: flow-top breccias, associated with cooling and breakup on the upper surface of lava flows; autobreccias, formed by in-situ alteration at the base of flows; fault-gouge breccias; and true sedimentary breccias derived from weathering and erosion of underlying flows. It is virtually impossible to assess the origin of breccia matrix by textural and mineralogical analyses alone. However, it is fundamental for our understanding of breccia provenance to determine the source component of the matrix material. Whether the matrix is uniquely clastderived can be determined by geochemical fingerprinting. Trace elements that are immobile during weathering and alteration do not change their relative abundances. A contribution to the matrix from any source with an immobile trace element signature different from that of the clasts would appear as a perturbation of the trace element signature of the matrix. Trace element analysis of bulk samples from clasts and matrix material in individual breccia units was undertaken in a fashion similar to that used by Brimhall and Dietrich (1987, doi:10.1016/0016-7037(87)90070-6) in analyzing soil provenance: (1) to help distinguish between sedimentary and volcanic breccias, (2) to determine the degree of mixing and depth of erosion in sedimentary breccias, and (3) to analyze the local provenance of the individual breccia components (matrix and clasts). The following elements were analyzed by X-ray fluorescence (XRF): Rb, Sr, Ba, U, Zr, Cu, Zn, Ti, Cr, and V. Of these elements, Zr and Ti probably exhibit truly immobile behavior (Humphris and Thompson, 1978, doi:10.1016/0016-7037(78)90222-3 ). The remaining elements are useful as a reference for the extent of compositional change during the formation of matrix material (Brimhall and Dietrich, 1987, doi:10.1016/0016-7037(87)90070-6).
Resumo:
The Neogene biostratigraphy presented here is based on the study of 230 samples through 737 m of pelagic sediment in Hole 806B. Sediment accumulation is interrupted only once in the uppermost lower Miocene (Zone N6), apparently coincident with a widespread deep-sea hiatus. Preservation of planktonic foraminifers through the section ranges from good to moderately poor. One hundred and ten species of planktonic foraminifers were identified; taxonomic notes on most species are included. All of the standard low-latitude Neogene foraminiferal zones are delineated, with the exceptions of Zones N8 and N9 because of a high first occurrence of Orbulina, and Zones N18 and N19 because of a high first occurrence of Sphaeroidinella dehiscens. Good agreement exists between the published account of the variation in planktonic foraminiferal species richness and the rates of diversification and turnover, and measurements of these evolutionary indexes in the record of Hole 806B. The global pattern of change in tropical/transitional species richness is paralleled in Hole 806B, with departures caused by either ecological conditions peculiar to the western equatorial Pacific or by inexactness in the estimation of million-year intervals in Hole 806B. Temporal changes in the relative abundance of taxa in the sediment assemblages, considered in light of their depth habitats, reveal a detailed picture of historical change in the structure of the upper water column over the Ontong Java Plateau. The dominance of surface dwellers (Paragloborotalia kugleri, P. mayeri, Dentoglobigerina altispira, Globigerinita glutinata, and Globigerinoides spp.) throughout the lower and middle Miocene is replaced by a more equitable distribution of surface (D. altispira and Globigerinoides spp.), intermediate (Globorotalia menardii plexus), and deep (Streptochilus spp.) dwellers in the late Miocene, following the closing of the Indo-Pacific Seaway and the initiation of large-scale glaciation in the Antarctic. The shoaling of the thermocline along the equator engendered by these climatic and tectonic events persisted through the Pliocene, when initial increases in the abundance of a new set of shallow, intermediate, and deep dwelling species of planktonic foraminifers coincide with the closing of the Panamanian Seaway.
Resumo:
Hydrothermal circulation at oceanic spreading ridges causes sea water to penetrate to depths of 2 to 3 km in the oceanic crust where it is heated to ~400 °C before venting at spectacular 'black smokers'. These hydrothermal systems exert a strong influence on ocean chemistry (Edmond et al., 1979, doi:10.1016/0012-821X(79)90061-X), yet their structure, longevity and magnitude remain largely unresolved (Elderfield and Schultz., 1996, doi:10.1146/annurev.earth.24.1.191). The active Transatlantic Geotraverse (TAG) deposit, at 26° N on the Mid-Atlantic Ridge, is one of the largest, oldest and most intensively studied of the massive sulphide mounds that accumulate beneath black-smoker fields. Here we report ages of sulphides and anhydrites from the recently drilled (Humphris et al., 1995, doi:10.1038/377713a0) TAG substrate structures -determined from 234U-230Th systematics analysed by thermal ionization mass spectrometry. The new precise ages combined with existing data (Lalou et al., 1993, doi:10.1029/92JB01898; 1998, doi:10.2973/odp.proc.sr.158.214.1998) show that the oldest material (11,000 to 37,000 years old) forms a layer across the centre of the deposit with younger material (2,300-7,800 years old) both above and below. This stratigraphy confirms that much of the sulphide and anhydrite are precipitated within the mound by mixing of entrained sea water with hydrothermal fluid (James and Elderfield, 1996, doi:10.1130/0091-7613(1996)024<1147:COOFFA>2.3.CO;2). The age distribution is consistent with episodic activity of the hydrothermal system recurring at intervals of up to 2,000 years.
Resumo:
Surface water conditions at the Integrated Ocean Drilling Program (IODP) Site U1314 (Southern Gardar Drift, 56° 21.8' N, 27° 53.3' W, 2820 m depth) were inferred using planktic foraminifer assemblages between Marine Isotope Stage (MIS) 19 and 11 (ca. 800-400 ka). Factor analysis of the planktic foraminifer assemblages suggests that the assemblage was controlled by three factors. The first factor (which explained 49% of the variance) is dominated by transitional and subpolar species and points to warm and salty surface water conditions (Atlantic water). The second factor (37%) is dominated by Neogloboquadrina pachyderma sin and has been associated with the presence of cold and low saline surface waters (Arctic water). Finally, the third factor (9%), linked to a significant presence of Turborotalita quinqueloba, reflects the closeness of the Arctic front (the boundary between Atlantic and Arctic water). The position of the Arctic and Polar fronts has been estimated across the glacial-interglacial cycles studied according to planktic foraminifer abundances from Site U1314 (and their factor analysis) combined with a synthesis of planktic foraminifer and diatom data from other North Atlantic sites. Regarding at the migrations of the Arctic front and the surface water masses distribution across each climatic cycle we determined five phases of development. Furthermore, deep ocean circulation changes observed in glacial-interglacial cycles have been associated with each phase. The high abundance of transitional-subpolar foraminifers (above 65% at Site U1314) during the early interglacial phase indicated that the Arctic front position and surface water masses distribution were similar to present conditions. During the late interglacial phase, N. pachyderma sin and T. quinqueloba slightly increased indicating that winter sea ice slightly expanded southwestwards whereas the ice volume remained stable or was still decreasing. N. pachyderma sin increased rapidly (above 65% at Site U1314) at the first phase of glacial periods indicating the expansion of the Arctic waters in the western subpolar North Atlantic. During the second phase of glacial periods the transitional-subpolar assemblage throve again in the central subpolar North Atlantic associated with strong warming events that followed ice-rafting events. The third phase of glacial periods corresponds to full glacial conditions in which N. pachyderma sin dominated the assemblage for the whole subpolar North Atlantic. This division in phases may be applied to the last four climatic cycles.
Resumo:
During "Meteor" Cruise 6/1966 in the northwest Atlantic a systematic survey of the bottom topography of the southeast Greenland continental margin was undertaken. Eighty-seven profiles transverse to the shelf edge at distances of 3-4 nautical miles and two longitudinal profiles parallel to the coast were carried out with the ELAC Narrow Beam Echo-Sounder giving a reliable record of even steep slopes. On the basis of the echo soundings the topography and morphology of the continental shelf and slope are evaluated. A detailed bathymetric chart and a serial profile chart were designed as working material for the morphological research. These maps along with the original echograms are morphometrically evaluated. The analysis of the sea bottom features is the basis of a subsequent morphogenetical interpretation, verified and extended by means of interpretation of magnetic data and sediment analysis (grain size, roundness, lithology). The results of the research are expressed in a geomorphological map. The primary findings can be summarized as follows: 1) The southeast Greenland shelf by its bottom topography can be clearly designated as a glacially formed area. The glacial features of the shelf can be classified into two zones nearly parallel to the coast: glacial erosion forms on the inner shelf and glacial accumulation forms on the outer shelf. The inner shelf is characterized by the rugged and hummocky topography of ice scoured plains with clear west/east slope asymmetry. On the outer shelf three types of glacial accumulation forms can be recognized: ice margin deposits with clearly expressed terminal moraines, glacial till plains and glaciomarine outwash fans. Both zones of the shelf can be subdivided into two levels of relief. The ice scoured plains, with average depths of 240 meters (m), are dissected to a maximum depth of 1060 m (Gyldenloves Trough) by trough valleys, which are the prolongations of the Greenland fjords. The banks of the outer shelf, with an average depth of 180 m, surround glacial basins with a maximum depth of 670 meters. 2) The sediments of the continental shelf can be classified as glacial due to their grain size distribution and the degree of roundness of the gravel particles. The ice margin deposits on the outer shelf can be recognized by their high percentage of gravels. On the inner shelf a rock surface is suggested, intermittently covered by glacial deposits. In the shelf troughs fine-grained sediments occur mixed with gravels. 3) Topography and sediments show that the southeast Greenland shelf was covered by an ice sheet resting on the sea floor during the Pleistocene ice-age. The large end moraines along the shelf edge probably indicate the maximum extent of the Wurm shelf ice resting on the sea floor. The breakthroughs of the end moraines in front of the glacial basins suggest that the shelf ice has floated further seaward over the increasing depths. 4) Petrographically the shelf sediments consist of gneisses, granites and basalts. While gneisses and granites occire on the nearby coast, basalt is not known to exist here. Either this material has been drifted by icebergs from the basalt province to the north or exists on the southeast Greenland shelf itself. The last interpretation is supported bythe high portion of basalt contained in the sediment samples taken and the strong magnetic anomalies probably caused by basaltic intrusions. 5) A magnetic profile allows the recognition of two magnetically differing areas which approximately coincide with the glacial erosion and accumulation zones. The inner shelf shows a strong and variable magnetic field because the glacially eroded basement forms the sea floor. The outer shelf is characterized by a weak and homogenous magnetic field, as the magnetized basement lies at greater depthy, buried by a thick cover of glacial sediments. The strong magnetic anomalies of the inner shelf are probably caused by dike swarms, similar to those observed further to the north in the Kangerdlugssuaq Fjord region. This interpretation is supported by the high basalt content of the sediment samples and the rough topography of the ice scoured plains which correlates in general with the magnetic fluctuations. The dike structures of the basement have been differentially eroded by the shelf ice. 6) The continental slope, extending from the shelf break at 313 m to a depth of 1270 m with an average slope of 11°, is characterized by delta-shaped projections in front of the shelf basins, by marginal plateaus, ridges and hills, by canyons and slumping features. The projections could be identified as glaciomarine sediment fans. This conclusion is supported by the strong decrease of magnetic field intensity. The deep sea hills and ridges with their greater magnetic intensities have to be regarded as basement outcrops projecting through the glaciomarine sediment cover. The upper continental rise, sloping seaward at about 2°, is composed of wide sediment fans and slump material. A marginal depression on the continental rise running parallel to the shelf edge has been identified. In this depression bottom currents capable of erosion have been recorded. South of Cape Farvel the depression extends to the accumulation zone of the "Eirik" sedimentary ridge. 7) By means of a study of the recent marine processes, postglacial modification of the ice-formed relief can be postulated. The retention effect of the fjord troughs and the high velocity of the East Greenland stream prevents the glacial features from being buried by sediments. Bottom currents capable of active erosion have only been found in the marginal depression on the continental rise. In addition, at the time of the lowest glacio-eustatic sea level, the shelf bottom was not situated in the zone of wave erosion. Only on the continental slope and rise bottom currents, sediment slumps and turbidity currents have led to significant recent modifications. Considering these results, the geomorphological development of the southeast Greenland continental terrace can be suggested as follows: 1. initial formation of a "peneplain", 2. fluvial incision, 3. submergence, and finally 4. glacial modification.
Resumo:
The development of widespread anoxic conditions in the deep oceans is evidenced by the accumulation and preservation of organic-carbon-rich sediments, but its precise cause remains controversial. The two most popular hypotheses involve (1) circulation-induced increased stratification resulting in reduced oxygenation of deep waters or (2) enhanced productivity in the surface ocean, increasing the raining down of organic matter and overwhelming the oxic remineralization potential of the deep ocean. In the periodic development of deep-water anoxia in the Pliocene-Pleistocene Mediterranean Sea, increased riverine runoff has been implicated both as a source for nutrients that fuel enhanced photic-zone productivity and a source of a less dense freshwater cap leading to reduced circulation, basin-wide stagnation, and deep-water oxygen starvation. Monsoon-driven increases in Nile River discharge and increased regional precipitation due to enhanced westerly activity-two mechanisms that represent fundamentally different climatic driving forces-have both been suggested as causes of the altered freshwater balance. Here we present data that confirm a distinctive neodymium (Nd) isotope signature for the Nile River relative to the Eastern Mediterranean-providing a new tracer of enhanced Nile outflow into the Mediterranean in the past. We further present Nd isotope data for planktonic foraminifera that suggest a clear increase in Nile discharge during the central intense period of two recent anoxic events. Our data also suggest, however, that other regional freshwater sources were more important at the beginning and end of the anoxic events. Taken at face value, the data appear to imply a temporal link between peaks in Nile discharge and enhanced westerly activity.
Resumo:
Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthic d18O time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069-779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (~940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthic d18O time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonic d18O) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator.