136 resultados para Size Distributions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The smallest marine phytoplankton, collectively termed picophytoplankton, have been routinely enumerated by flow cytometry since the late 1980s, during cruises throughout most of the world ocean. We compiled a database of 40,946 data points, with separate abundance entries for Prochlorococcus, Synechococcus and picoeukaryotes. We use average conversion factors for each of the three groups to convert the abundance data to carbon biomass. After gridding with 1° spacing, the database covers 2.4% of the ocean surface area, with the best data coverage in the North Atlantic, the South Pacific and North Indian basins. The average picophytoplankton biomass is 12 ± 22 µg C L-1 or 1.9 g C m-2. We estimate a total global picophytoplankton biomass, excluding N2-fixers, of 0.53 - 0.74 Pg C (17 - 39 % Prochlorococcus, 12 - 15 % Synechococcus and 49 - 69 % picoeukaryotes). Future efforts in this area of research should focus on reporting calibrated cell size, and collecting data in undersampled regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is a first effort to compile the largest possible body of data available from different plankton databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Data (MAREDAT) project, which aims at building consistent data sets for the main PFTs (Plankton Functional Types) in order to help validate biogeochemical ocean models by using converted C biomass from abundance data. Diatom abundance data were obtained from various research programs with the associated geolocation and date of collection, as well as with a taxonomic information ranging from group down to species. Minimum, maximum and average cell size information were mined from the literature for each taxonomic entry, and all abundance data were subsequently converted to biovolume and C biomass using the same methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early Triassic oceans were characterized by deposition of a number of "anachronistic facies", including microbialites, seafloor carbonate cement fans, and giant ooids. Giant ooids were particularly prevalent in Lower Triassic sections across South China and exhibit unusual features that may provide insights into marine environmental conditions following the end-Permian mass extinction. The section at Moyang (Guizhou Province) contains abundant giant ooids ranging in size between 2 and 6 mm (maximum 12 mm) and exhibiting various cortical structures, including regular, deformed, compound, regenerated and "domed". Preservation of ooid cortical structure is generally good as indicated by petrographic observations, and trace element and carbon isotope analyses suggest that diagenesis occurred in a closed diagenetic system. All ooids exhibit fine concentric laminae, frequently alternating between light-colored coarsely crystalline and dark-colored finely crystalline layers probably reflecting variation in organic content or original mineralogy. Under scanning electron microscope, biomineralized filaments or biofilms and tiny carbonate fluorapatite (CFA) crystals are commonly found in the finely crystalline layers. We infer that the precipitation of CFA was related to adsorption of P via microbial activity on the surfaces of ooids following episodic incursions of deep waters rich in carbon dioxide, hydrogen sulfide and phosphate into shallow-marine environments. Giant ooid precipitation may have been promoted in shallow ramp settings during these events by increased watermass agitation and supersaturation with respect to calcium carbonate, as well as reduced carbonate removal rates through biotic skeletal formation. Spatio-temporal distribution data reveal that giant ooids were widespread in the Tethyan region during the Early Triassic, and that they were most abundant immediately after the end-Permian crisis and disappeared gradually as metazoans repopulated marine environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the goals of EU BASIN is to understand variability in production across the Atlantic and the impact of this variability on higher trophic levels. One aspect of these investigations is to examine the biomes defined by Longhurst (2007). These biomes are largely based on productivity measured with remote sensing. During MSM 26, mesopelagic fish and size-spectrum data were collected to test the biome classifications of the north Atlantic. In most marine systems, the size-spectrum is a decay function with more, smaller organisms and fewer larger organisms. The intercept of the size-spectrum has been linked to overall productivity while the slope represents the "rate of decay" of this productivity (Zhou 2006, doi:10.1093/plankt/fbi119). A Laser In-Situ Scattering Transmissometer was used to collect size-spectrum data and net collections were made to capture mesopelagic fish. The relationship among the mesopelagic fish size and abundance distributions will be compared to the estimates of production from the size-spectrum data to evaluate the biomes of the stations occupied during MSM 26.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrozooplankton are an important link between higher and lower trophic levels in the oceans. They serve as the primary food for fish, reptiles, birds and mammals in some regions, and play a role in the export of carbon from the surface to the intermediate and deep ocean. Little, however, is known of their global distribution and biomass. Here we compiled a dataset of macrozooplankton abundance and biomass observations for the global ocean from a collection of four datasets. We harmonise the data to common units, calculate additional carbon biomass where possible, and bin the dataset in a global 1 x 1 degree grid. This dataset is part of a wider effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. Over 387 700 abundance data and 1330 carbon biomass data have been collected from pre-existing datasets. A further 34 938 abundance data were converted to carbon biomass data using species-specific length frequencies or using species-specific abundance to carbon biomass data. Depth-integrated values are used to calculate known epipelagic macrozooplankton biomass concentrations and global biomass. Global macrozooplankton biomass has a mean of 8.4 µg C l-1, median of 0.15 µg C l-1 and a standard deviation of 63.46 µg C l-1. The global annual average estimate of epipelagic macrozooplankton, based on the median value, is 0.02 Pg C. Biomass is highest in the tropics, decreasing in the sub-tropics and increasing slightly towards the poles. There are, however, limitations on the dataset; abundance observations have good coverage except in the South Pacific mid latitudes, but biomass observation coverage is only good at high latitudes. Biomass is restricted to data that is originally given in carbon or to data that can be converted from abundance to carbon. Carbon conversions from abundance are restricted in the most part by the lack of information on the size of the organism and/or the absence of taxonomic information. Distribution patterns of global macrozooplankton biomass and statistical information about biomass concentrations may be used to validate biogeochemical models and Plankton Functional Type models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to carbon biomass using species-specific carbon conversion factors. Microscopic counts of single-celled and colonial Phaeocystis were obtained both through the mining of online databases and by accepting direct submissions (both published and unpublished) from Phaeocystis specialists. We recorded abundance data from a total of 1595 depth-resolved stations sampled between 1955-2009. The quality-controlled dataset includes 5057 counts of individual Phaeocystis cells resolved to species level and information regarding life-stages from 3526 samples. 83% of stations were located in the Northern Hemisphere while 17% were located in the Southern Hemisphere. Most data were located in the latitude range of 50-70° N. While the seasonal distribution of Northern Hemisphere data was well-balanced, Southern Hemisphere data was biased towards summer months. Mean species- and form-specific cell diameters were determined from previously published studies. Cell diameters were used to calculate the cellular biovolume of Phaeocystis cells, assuming spherical geometry. Cell biomass was calculated using a carbon conversion factor for Prymnesiophytes (Menden-Deuer and Lessard, 2000). For colonies, the number of cells per colony was derived from the colony volume. Cell numbers were then converted to carbon concentrations. An estimation of colonial mucus carbon was included a posteriori, assuming a mean colony size for each species. Carbon content per cell ranged from 9 pg (single-celled Phaeocystis antarctica) to 29 pg (colonial Phaeocystis globosa). Non-zero Phaeocystis cell biomasses (without mucus carbon) range from 2.9 - 10?5 µg l-1 to 5.4 - 103 µg l-1, with a mean of 45.7 µg l-1 and a median of 3.0 µg l-1. Highest biomasses occur in the Southern Ocean below 70° S (up to 783.9 µg l-1), and in the North Atlantic around 50° N (up to 5.4 - 103 µg l-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Drilling Program Legs 170 and 205 offshore Costa Rica provide structural observations which support a new model for the geometry and deformation response to the seismic cycle of the frontal sedimentary prism and decollement. The model is based on drillcore, thin section, and electron microscope observations. The decollement damage zone is a few tens of meters in width, it develops mainly within the frontal prism. A clear cm-thick fault core is observed 1.6 km from the trench. The lower boundary of the fault core is coincident with the lithological boundary between the frontal prism and the hemipelagic and pelagic sediment of the Cocos plate. Breccia clast distributions in the upper portion of the decollement damage zone were studied through fractal analysis. This analysis shows that the fractal dimension changes with brecciated fragment size, implying that deformation was not accommodated by self-similar fracturing. A higher fractal dimensionality correlates with smaller particle size, which indicates that different or additional grain-size reduction processes operated during shearing. The co-existence of two distinct fracturing processes is also confirmed by microscopic analysis in which extension fracturing in the upper part of the damage zone farthest from the fault core is frequent, while both extension and shear fracturing occur approaching the fault core. The coexistence of extensional and shear fracturing seems to be best explained by fluid pressure variations in response to variations of the compressional regime during the seismic cycle. During the co-seismic event, sub-horizontal compression and fluid pressure increase, triggering shear fracturing and fluid expulsion. Fractures migrate upward with fluids, contributing to the asymmetric shape of the decollement, while slip propagates. In the inter-seismic interval the frontal prismrelaxes and fluid pressure drops. The frontal prismgoes into diffuse extension during the intervalwhen plate convergence is accommodated by creep along the ductile fault core. The fault core is typically a barrier to deformation, which is explained by its weak, but impermeable, nature. The localized development of a damage zone beneath the fault core is characterized by shear fracturing that appears as the result of local strengthening of the detachment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface layer of bottom sediments on the Barents Sea shelf has an irregular but generally very low abundance of diatoms. Tests of species belonging to present-day diatom flora were absent in nearly half of samples; their abundance was only a few shells per gram of dry sediment in 30% of the samples, it was up to 100 shells per gram in 9% of the samples, and was in thousands of shells per gram in only 13% of the samples. The lowest abundances of diatom shells were found in sediments of the eastern and northeastern parts of the sea owing to unfavorable sedimentation conditions and deficiency of dissolved silica in water. But distribution of diatom species on the surface of bottom sediments is strictly consistent with their present-day ranges. About 30% of the samples contained re-deposited Cretaceous and Paleogene diatoms indicating that bottom sediments have largely formed by scouring and re-deposition of underlying material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs Gamma-A nifH genes abundance, computed from a collection of source data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present collection presents the original data sets used to compile Global distributions of diazotrophs abundance, biomass and nitrogen fixation rates

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs abundance and biomass, computed from a collection of source data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield - 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs nitrogen fixation rates, computed from a collection of source data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. This is a gridded data product about diazotrophic organisms . There are 6 variables. Each variable is gridded on a dimension of 360 (longitude) * 180 (latitude) * 33 (depth) * 12 (month). The first group of 3 variables are: (1) number of biomass observations, (2) biomass, and (3) special nifH-gene-based biomass. The second group of 3 variables is same as the first group except that it only grids non-zero data. We have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling more than 11,000 direct field measurements including 3 sub-databases: (1) nitrogen fixation rates, (2) cyanobacterial diazotroph abundances from cell counts and (3) cyanobacterial diazotroph abundances from qPCR assays targeting nifH genes. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. Data are assigned to 3 groups including Trichodesmium, unicellular diazotrophic cyanobacteria (group A, B and C when applicable) and heterocystous cyanobacteria (Richelia and Calothrix). Total nitrogen fixation rates and diazotrophic biomass are calculated by summing the values from all the groups. Some of nitrogen fixation rates are whole seawater measurements and are used as total nitrogen fixation rates. Both volumetric and depth-integrated values were reported. Depth-integrated values are also calculated for those vertical profiles with values at 3 or more depths.