621 resultados para Regionale Geologie
Resumo:
Biodiversity estimates through geological times are difficult because of taphonomic perturbations that affect sedimentary records. Pristine shell assemblages, however, allow for calibration of past diversity. Diversity structures of two exceptionally preserved Miocene bivalve assemblages are quantitatively determined, compared with recent communities and used as paleoenvironmental proxy. The extremely rich assemblages were collected in Aquitanian (Early Miocene) carbonate sands of the Vives Quarry (Meilhan, SW France). Both paleontological and sedimentological data indicate a coral patch-reef environment, which deposits were affected by transport processes. Among two samples more than 28.000 shells were counted and 135 species identified. Sample Vives 1 is interpreted as a proximal debris flow and Sample Vives 2 as a sandy shoreface/foreshore environment influenced by storms. The two Vives assemblages have a similar diversity structure despite facies differences. Rarefaction curves level off at ~600 shells. The rare species account for more than 80 % of the species pool. The high values of PIE diversity index suggest a relatively high species richness and an even distribution of abundance of the most common species within the assemblages. The fossil data are compared to death shell assemblages (family level) of a modern reefal setting (Touho area, New Caledonia). The shape of the rarefaction curves and PIE indices of Meilhan fossil assemblages compare well to modern data, especially those of deep (>10 m water depth), sandy depositional environments found downward the reef slope (slope and pass settings). In addition to primary ecological signals, the similarity of the Vives samples and the Recent deep samples derives from taphonomic processes. This assumption is supported by sedimentological and paleontological observations. Sediment transports gather allochthonous and in situ materials leading to mixing of various ecological niches. Such taphonomic processes are recorded in the diversity metrics. Environmental mixing and time-averaging of the shell assemblages disturb the preservation of local-scale diversity properties but favour the sampling of the regional-scale diversity.
Resumo:
Topographic data of this geological map were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (hight differences) are accurate to approximately ±10 m.
Resumo:
Composition, grain-size distribution, and areal extent of Recent sediments from the Northern Adriatic Sea along the Istrian coast have been studied. Thirty one stations in four sections vertical to the coast were investigated; for comparison 58 samples from five small bays were also analyzed. Biogenic carbonate sediments are deposited on the shallow North Adriatic shelf off the Istrian coast. Only at a greater distance from the coast are these carbonate sediments being mixed with siliceous material brought in by the Alpine rivers Po, Adige, and Brenta. Graphical analysis of grain-size distribution curves shows a sediment composition of normally three, and only in the most seaward area, of four major constituents. Constituent 1 represents the washed-in terrestrial material of clay size (Terra Rossa) from the Istrian coastal area. Constituent 2 consists of fine to medium sand. Constituent 3 contains the heterogeneous biogenic material. Crushing by organisms and by sediment eaters reduces the coarse biogenic material into small pieces generating constituent 2. Between these two constituents there is a dynamic equilibrium. Depending upon where the equilibrium is, between the extremes of production and crushing, the resulting constituent 2 is finer or coarser. Constituent 4 is composed of the fine sandy material from the Alpine rivers. In the most seaward area constituents 2 and 4 are mixed. The total carbonate content of the samples depends on the distance from the coast. In the near coastal area in high energy environments, the carbonate content is about 80 %. At a distance of 2 to 3 km from the coast there is a carbonate minimum because of the higher rate of sedimentation of clay-sized terrestrial, noncarbonate material at extremely low energy environments. In an area between 5 and 20 km off the coast, the carbonate content is about 75 %. More than 20 km from the shore, the carbonate content diminishes rapidly to values of about 30 % through mixing with siliceous material from the Alpine rivers. The carbonate content of the individual fractions increases with increasing grain-size to a maximum of about 90 % within the coarse sand fractions. Beyond 20 km from the coast the samples show a carbonate minimum of about 13 % within the sand-size classes from 1.5 to 0.7 zeta¬? through mixing with siliceous material from the alpine rivers. By means of grain-size distribution and carbonate content, four sediment zones parallel to the coast were separated. Genetically they are closely connected with the zonation of the benthic fauna. Two cores show a characteristic vertical distribution of the sediment. The surface zone is inversely graded, that means the coarse fractions are at the top and the fine fractions are at the bottom. This is the effect of crushing of the biogenic material produced at the surface by predatory organisms and by sediment eaters. lt is proposed that at a depth of about 30 cm a chemical solution process begins which leads to diminution of the original sediment from a fine to medium sand to a silt. The carbonate content decreases from about 75 % at the surface to 65 % at a depth of 100 cm. The increase of the noncarbonate components by 10 % corresponds to a decrease in the initial amount of sediment (CaC03=75 %) by roughly 30 % through solution. With increasing depth the carbonate content of the individual fractions becomes more and more uniform. At the surface the variation is from 30 % to 90 %, at the bottom it varies only between 50 % and 75 %. Comparable investigations of small-bay sediments showed a c1ear dependence of sediment/faunal zonation from the energy of the environment. The investigations show that the composition and three-dimensional distribution of the Istrian coastal sediments can not be predicted only from one or a few measurable factors. Sedimentation and syngenetic changes must be considered as a complex interaction between external factors and the actions of producing and destroying organisms that are in dynamic equilibrium. The results obtained from investigations of these recent sediments may be of value for interpreting fossil sediments only with strong limitations.
Resumo:
Der Lemgow wird von den Sedimenten der dreifachen saalezeitlichen Eisbedeckung aufgebaut. Ältere (tertiäre) Ablagerungen bilden entweder direkt die Quartärbasis oder sind in Form von Schollen am Aufbau beteiligt. Altquartäre oder elsterzeitliche Sedimente konnten bislang nicht nachgewiesen werden.