475 resultados para Poecilia reticulata
Resumo:
The benthic fauna was investigated during the expedition ANT-XXIV/2 (2007/08) in relation to oceanographic features, biogeochemical properties and sediment characteristics, as well as the benthic, pelagic and air-breathing fauna. The results document that Maud Rise (MR) differs distinctly from surrounding deep-sea basins investigated during previous Southern Ocean expeditions (ANDEEP 2002, 2005). Considering all taxa, the overall similarity between MR and adjacent stations was low (~20% Bray-Curtis-Similarity), and analyses of single taxa show obvious differences in species composition, abundances and densities. The composition and diversity of bivalves of MR are characterised by extremely high abundances of three species, especially the small sized Vesicomya spp. Exceptionally high gastropod abundance at MR is due to the single species Onoba subantarctica wilkesiana, a small brooder that may prey upon abundant benthic foraminiferas. The abundance and diversity of isopods also show that one family, Haplomunnidae, occurs with a surprisingly high number of individuals at MR while this family was not found at any of the 40 bathyal and abyssal ANDEEP stations. Similarly, polychaetes, especially the tube-dwelling, suspension-feeder fraction, are represented by species not found at the comparison stations. Sponges comprise almost exclusively small specimens in relatively high numbers, especially a few species of Polymastiidae. Water-column sampling from the surface to the seafloor, including observations of top predators, indicate the existence of a prospering pelagic food web. Local concentrations of top predators and zooplankton are associated with a rich ice-edge bloom located over the northern slope of MR. There the sea ice melts, which is probably accelerated by the advection of warm water at intermediate depth. Over the southern slope, high concentrations of Antarctic krill (Euphausia superba) occur under dense sea ice and attract Antarctic Minke Whales (Balaenoptera bonaerensis) and several seabird species. These findings suggest that biological prosperity over MR is related to both oceanographic and sea-ice processes. Downward transport of the organic matter produced in the pelagic realm may be more constant than elsewhere due to low lateral drift over MR.
Resumo:
Quantitative analysis of upper Eocene-upper Oligocene calcareous nannofossil assemblages from five Ocean Drilling Program sites in the Atlantic and Indian Ocean sectors of the Southern Ocean reveals an abrupt increase in cool-water taxa at the top of magnetic Subchron C13R ca. 35.9 Ma, coincident with an enrichment of ~1? d18O in the planktonic foraminifers at these sites. The synchrony of the abrupt increase in cool-water taxa in the Southern Ocean renders this event a useful biostratigraphic datum at southern high latitudes. This earliest Oligocene cool-water taxa increase was the sharpest and largest during the late Eocene-late Oligocene interval and indicates a drop in surface-water temperature of more than 3°C in the Southern Ocean. This suggests that the earliest Oligocene d18O shift represents primarily a temperature signal; a small portion (~0.2?) is attributable to a global ice-volume increase.
Resumo:
Although they are fossils of uncertain origin, bolboforms are the best calcareous microfossil group for Neogene biostratigraphy in the North Atlantic. Fifty-two Bolboforma species were observed at the Hatton-Rockall Basin in Ocean Drilling Program Holes 982A (26 samples) and 982B (301 samples) and in Deep Sea Drilling Project Hole 116 (71 samples). The sequence investigated spans the interval from lower Miocene to upper Pliocene. Fourteen zones/subzones were identified and correlated with the calcareous nannoplankton zones, the planktonic foraminifer biostratigraphy, and the time (Ma). The last occurrence of the genus Bolboforma can be dated to 2.84 Ma. Different Bolboforma specimens of middle Miocene age, observed in upper Miocene and upper middle Miocene sediments at Site 982, document redeposition of sediment from the Rockall Bank into the Hatton-Rockall Basin during the latest middle Miocene and late Miocene.
Resumo:
Über die Verbreitung, Gliederung und Ausbildung des Jungtertiärs im westlichen Schleswig-Holstein war bisher nicht viel bekannt. Am besten bearbeitet sind die glazial gestauchten Schollen von Morsum/Sylt. Eine Aufzählung erbohrter Miozänvorkommen mit nicht immer überzeugender Begründung lieferte H.-L. HECK 1935. S. THIELE (1941) hat die ihm bekannten Vorkommen hauptsächlich nach faziellen und petrographischen Gesichtspunkten bearbeitet. Er erkannte richtig die Stellung der Braunkohlensande. Die angekündigte palaeontologische Bearbeitung ist nicht erschienen. Eine allgemeine Übersicht über die Entwicklung des Jungtertiärs bringen W. WOLFE und H.-L. HECK 1949. W. HINSCH lieferte wertvolle Beiträge zur Molluskenfauna und zur Gliederung des Miozäns (1952, 1955). Über neue Vorkommen von Braunkohlen-Sanden berichtete E. DITTMER(1 956), eine erste Übersicht über neue Vorkommen der Hemmoorer Stufe gab derselbe Verfasser 1957.
Resumo:
A major objective of Leg 189 was to date the opening of the Australia-Antarctic Gateway to shallow-water circulation and subsequently to deepwater circulation in the Paleogene. Calcareous nannofossils are the most consistently present, although not necessarily the most abundant fossil group in Paleogene sections, and the shipboard study (Exon, Kennett, Malone, et al., 2001, doi:10.2973/odp.proc.ir.189.2001) showed that they generally provided the most useful age information. This report presents documentation of the stratigraphic distribution of nannofossils in the Paleogene and summarizes useful nannofossil datums, which should facilitate construction of age-depth curves and contribute to an integrated chronology for Leg 189 sediments. Previous Paleogene nannofossil study in this area is that of Edwards and Perch-Nielsen (1975, doi:10.2973/dsdp.proc.29.113.1975).
Resumo:
The biostratigraphic distribution and qualitative relative abundance of Quaternary-Pliocene diatoms from Ocean Drilling Program Leg 188, Sites 1165 (64.380°S, 67.219°E) and 1166 (67.696°S, 74.787°E) offshore from East Antarctica, are documented in this report. The upper ~50 meters below seafloor (mbsf) of Hole 1165B consists of brown diatom-bearing silty clay spanning the upper Pleistocene to lower Pliocene. The diatom stratigraphy indicates a disconformity at ~17.1 mbsf of 0.5- to 0.6-m.y. duration. The integration of biostratigraphic and magnetostratigraphic data identified other disconformities at ~6.0, 14.4, 15.6, and 16.0 mbsf, but the duration of these hiatuses cannot be resolved through diatom biostratigraphy. In Hole 1166A, a narrow interval of diatomaceous Quaternary sediment is identified in the upper 2.92 mbsf and dated biostratigraphically at <0.38 Ma. The remaining Quaternary-Pliocene section is dominated by diamicton, except at ~114 mbsf, where two thin diatomaceous beds are present. The lower bed is ~65 cm thick, 2.5-2.7 to 2.7-3.2 Ma in age, and possibly disconformably overlain by the upper bed, which is ~15 cm thick and 1.8-2.0 to 2.1-2.5 Ma in age. The Pliocene assemblages in Hole 1166A contain components of both Southern Ocean and Antarctic continental shelf (Ross Sea) diatom floras.
Resumo:
Results of a preliminary study of Early Cretaceous dinocyst assemblages from Site 765 on the Argo Abyssal Plain, off northwestern Australia, are presented. The palynological sequence is interpreted in terms of Australian zones and is, in descending order, the late Aptian Diconodinium davidii Zone (Cores 123-765C-33R to -39R), the middle to early Aptian Odontochitina operculata Zone (Cores 123-765C-40R to -49R), the Barremian Muderongia australis Zone (Cores 123-765C-50R to -54R), and the Berriasian lower Batioladinium reticulatum Zone (Core 123-765C-59R). The dating of the sequence as late Aptian to Berriasian on the basis of dinocysts is supported, in part, by data concerning associated foraminiferal, radiolarian, and calcareous nannofossil suites.
Resumo:
During Leg 43, six holes (Sites 382-387) were drilled in the western part of the North Atlantic Ocean; locations of sites are shown in Figure 1. Lower Cretaceous to Quaternary calcareous nannofossils were found in 127 of 189 cores recovered during the leg. The ages and zonal assignments of these fossiliferous cores based upon light-microscopical observation are given in Table 1. An almost continuous succession of nannofossil assemblages of the lower Maestrichtian to upper Paleocene is present at Site 384. A detailed investigation was conducted on samples at this site, and the evolution of approximately 50 species is documented through almost the entire Paleocene epoch.