556 resultados para North Atlantic treaty, 1949.
Resumo:
Upper Pliocene and Pleistocene abundance fluctuations of the radiolarian Cycladophora davisiana (Ehrenberg) davisiana (Petrushevskaya) are documented from North Atlantic (Site 609) and Labrador Sea (Site 646B) to provide the first long-term correlation of its abundance fluctuations to oxygen isotope stages 1-114. Also examined are temporal and regional fluctuations in abundances C. d. davisiana and the global dispersal routes of the species. The first occurrence of C. d. davisiana in the eastern North Atlantic Ocean (Site 609) occurred between 2.586 and 2.435 Ma (oxygen isotope stages 109.66-102.19). During the early Matuyama Chron, prior to oxygen isotope stage 63, C. d. davisiana abundances were less than 1% and never greater than 12%, while abundances of greater than 5% are found in stages 65.71-73, 74, and 83-84. The initial major abundance peak (35.7%) of C. d. davisiana was noted near the stage 63/62 boundary. Abundance peaks of greater than 15%, between oxygen isotope stages 35 and 63, are limited to stages 63.02, 58.07, 55.07-54.26, and 50.76-50.22. These represent the only such abundance peaks detected during the first c. 1.5 million years of the species within the North Atlantic. The character of C. d. davisiana abundance fluctuations in Site 609 changes after oxygen isotope stage 35; average abundances are greater (7.7% vs. 4.3%) and abundance maxima of more than 15% are more frequent. Many, but not all, peak abundances of C. d. davisiana occur in glacial stages (e.g., 8, 14, 18, 20, 26, 30, 34, 50, 54, and 58). Increased abundances of the species are also noted in weak interglacial stages (e.g., stages 3, 23, 39, and 41), and significant cool periods of robust interglacial periods (e.g., late stage 11). Sample spacing is adequate in some stages to note some rapid changes in abundance near stage transitions (e.g., stages 4/5, 25/26, 62/63). The sample density in Holes 609 and 611 and the upper portion of 646B is sufficient to detect a synchroneity of many abundance maxima and minima among sites. Some abundance peaks are undetected in one or more of the two holes, warranting further sampling to obtain a more accurate record of regional abundance fluctuations. Prior to stage 36, few ages of Hole 611 peaks are the same as those in the more precisely dated Hole 609. The highest abundances of C. d. davisiana were noted in Labrador Sea Hole 646B where the earliest known occurrence of the species is documented (3.08-2.99 Ma). C. d. davisiana is inferred to have evolved in the Labrador Sea (or Arctic), and migrated next through the Arctic into the North Pacific (2.62-2.64 Ma, stage 114) before migrating into the Norwegian Sea (2.63-2.53 Ma) and North Atlantic (2.59-2.44 Ma, stages 109-102). Additional migration of C. d. dauisiana into the southern South Atlantic (Site 704) occurred much later (2.06 Ma, stage 83).
Resumo:
The application of quantitative and semiquantitative methods to assemblage data from dinoflagellate cysts shows potential for interpreting past environments, both in terms of paleotemperature estimates and in recognizing water masses and circulation patterns. Estimates of winter sea-surface temperature (WSST) were produced by using the Impagidinium Index (II) method, and by applying a winter-temperature transfer function (TFw). Estimates of summer sea-surface temperature (SSST) were produced by using a summer-temperature transfer function (TFs), two methods based on a temperature-distribution chart (ACT and ACTpo), and a method based on the ratio of gonyaulacoid:protoperidinioid specimens (G:P). WSST estimates from the II and TFw methods are in close agreement except where Impagidinium species are sparse. SSST estimates from TFs are more variable. The value of the G:P ratio for the Pliocene data in this paper is limited by the apparent sparsity of protoperidinioids, which results in monotonous SSST estimates of 14-26°C. The ACT methods show two biases for the Pliocene data set: taxonomic substitution may force 'matches' yielding incorrect temperature estimates, and the method is highly sensitive to the end-points of species distributions. Dinocyst assemblage data were applied to reconstruct Pliocene sea-surface temperatures between 3.5-2.5 Ma from DSDP Hole 552A, and ODP Holes 646B and 642B, which are presently located beneath cold and cool-temperate waters north of 56°N. Our initial results suggest that at 3.0 Ma, WSSTs were a few degrees C warmer than the present and that there was a somewhat reduced north-south temperature gradient. For all three sites, it is likely that SSSTs were also warmer, but by an unknown, perhaps large, amount. Past oceanic circulation in the North Atlantic was probably different from the present.
Resumo:
Sr and Nd isotopic compositions have been measured on the lithic fraction of last climatic cycle sediments from the North Atlantic (~40°N/~60°N), in order to identify the origins of the particles. From the reconstruction of their transport pathways, we deduce the mechanisms that explain their distributions. The main source regions are the Canadian shield (mostly the area of Baffin Bay and western Greenland), the Scandinavian shield, the European region (British Isles and Bay of Biscay), and Iceland. We observe a significant glacial/interglacial contrast, characterized by a dominant Icelandic input via near-bottom transport by North Atlantic Deep Water (NADW) during the interglacials and a largely continent-derived contribution of surface-transported, ice-rafted detritus (IRD) during the glacial period. During the last glacial period, the Heinrich events (abrupt, massive discharges of IRD) originated not only from the Laurentide ice sheet as heretofore envisioned but also from other sources. Three other major North Atlantic ice sheets (Fennoscandian, British Isles, and Icelandic) probably surged simultaneously, discharging ice and IRD into the North Atlantic. As opposed to theories implying a unique, Laurentide origin [Gwiazda et al., 1996 doi:10.1029/95PA03135] driven by an internal mechanism [MacAyeal, 1993 doi:10.1029/93PA02200], we confirm that the Icelandic and the Fennoscandian ice sheets also surged as recently proposed by other authors, and we here also distinguish a possible detrital contribution from the British Isles ice sheet. This pan-North Atlantic phenomenon thus requires a common regional, external forcing.