800 resultados para Minerals.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lower Oligocene to Pleistocene volcaniclastic sands and sandstones recovered around the Izu-Bonin Arc during Ocean Drilling Program Leg 126 were derived entirely from Izu-Bonin Arc volcanism. Individual grains consist of volcanic glass, pumice, scoria, basaltic or andesitic fragments, plagioclase, pyroxene, and minor olivine and hornblende. In Pliocene-Pleistocene samples plagioclase and heavy minerals in the volcaniclastic sands and sandstones are present in the following abundances: plagioclase > orthopyroxene > clinopyroxene > pigeonite > olivine. In contrast, plagioclase and heavy minerals found in Oligocene-Miocene samples occur in the following order: plagioclase > clinopyroxene > orthopyroxene > hornblende. The low concentration of Al, Ti, and Cr in calcium-rich clinopyroxenes in Oligocene to Holocene sediments suggests that the sources of the volcaniclastic detritus were nonalkalic igneous rocks. There are, however, some distinctive differences in the chemical composition of pyroxene between the Pliocene-Pleistocene and Oligocene-Miocene volcaniclastic sands and sandstones. Orthopyroxene belongs to the hypersthene-ferrohypersthene series (Fe-rich) in Pliocene-Pleistocene sediments, and the bronzitehypersthene series (Mg-rich) in Oligocene-Miocene sediments. Clinopyroxene is characterized by augite and pigeonite in Pliocene-Pleistocene sediments, and by the diopside-augite series in Oligocene-Miocene sediments. Mineral assemblages and mineral chemistry of the volcaniclastic sands and sandstones reflect those of the volcanic source rocks. Therefore, the observed changes in mineralogy record the historical change in volcanism of the Izu-Bonin Arc. The mineralogy is consistent with the geochemistry of the volcaniclastic sands and sandstones and the geochemistry of forearc volcanic rocks of the Izu-Bonin Arc since the Oligocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We collected 20 carbonate nodules from the inner trench slope deposits of the Middle America Trench area off Mexico. Carbonate nodules are found only within the methane-rich layer beneath the mixed layer of methane and hydrogen sulfide. They have been investigated by microscopic, scanning electron microscopic (SEM), X-ray diffraction, and stable isotopic analytical methods. Calcite, magnesian calcite, dolomite, and rhodochrosite were recognized as carbonate minerals. Each carbonate nodule is usually represented by single species of carbonate minerals. Carbonate nodules are subdivided into micrite nodules and recrystallized nodules according to textural features. The carbonate crystallites in each micrite nodule are equidimensional. Their sizes range from several to 30 µm, as revealed by SEM micrographs. The chemical composition of calcite is changed from pure calcite to high magnesian calcite, as shown by the shift of the (104) reflection in X-ray diffraction patterns. Fe substitution for Ca in dolomite was also observed. Carbon isotopic composition shows an unusually wide range - from -42.9 to +13.5 per mil - in PDB scale, whereas oxygen isotopic compositions of almost all the carbonate nodules are constantly enriched in 18O from +3.4 to +7.60 per mil in PDB scale. These wide variations in carbon isotopic composition indicate several sources for the carbon in carbonate nodules. Carbon with a negative d13C value was derived from biochemical oxidation of methane with a negative d13C value. On the other hand, carbon with positive d13C value was probably formed during methane production in an anoxic condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Leg 80 basalts drilled on the Porcupine Abyssal Plain 10 km southwest of Goban Spur (Hole 550B) and on the western edge of Goban Spur (Hole 551), respectively, are typical light-rare-earth-element- (LREE-) depleted oceanic tholeiites. The basalts from the two holes are almost identical; most of their primary geochemical and mineralogical characteristics have been preserved, but they have undergone some low-temperature alteration by seawater, such as enrichment in K, Rb, and Cs and development of secondary potassic minerals of the "brownstone facies." K/Ar dating fail to give realistic emplacement ages; the apparent ages obtained become younger with alteration (causing an increase in K2O). Hole 551 basalts are clearly different from the continental tholeiites emplaced on the margins of oceanizing domains during the prerift and synrift stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Galicia margin lies northwest of the Iberian Peninsula and is a passive ocean margin with thin sedimentary cover. Altered peridotite was recovered from ODP Site 637, on the north-trending ridge at the western edge of the margin, near the oceanic/continental crust boundary. The altered ultramafics were originally clinopyroxene-rich upper mantle harzburgites and are now extensively serpentinized (>85%) and cut by very late-stage carbonate veins. Despite pervasive late, low-temperature alteration, evidence of early, high-temperature alteration remains. Alteration is apparent as (1) amphibole rims on clinopyroxene (>800°C), (2) hornblende + tremolite (450° to 800°C), (3) breakdown of hornblende to form tremolite + chlorite (<450°C), (4) zoned Cr-spinels, (5) hydration of orthopyroxene and olivine to serpentine, (6) serpentine veins, (7) replacement of pyroxene and olivine by calcite, and (8) calcite veins and vugs. Both the relict igneous and the high-temperature alteration minerals (amphiboles) show evidence of brittle deformation. Subsequent low-temperature alteration veins and minerals are deformed only in faulted and brecciated zones. This textural evidence suggests that the low-temperature alteration occurred after emplacement of the ultramafics at the surface. Serpentine fills tension fractures in orthopyroxene, and both serpentine and calcite fill tension cracks in olivine. The high-temperature alterations in these samples are similar to those found in oceanic fracture zone and ophiolite ultramafics. This widespread occurrence of high-temperature alteration suggests that hot fluids were pervasive in these ultramafic blocks. Localization of high-temperature alteration close to large carbonate veins suggests channelization of the late, low-temperature fluids. Earlier hydrations (e.g., high-temperature alterations and serpentinization) were pervasive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cherts recovered during DSDP Leg 72 from Rio Grande Rise sediments (Site 516) consist of both cristobalite and quartz, and contain ghosts of foraminifers and (more rare) radiolarians. Porcelanite made of disordered cristobalite is found in most old enclosing sediments. Local dissolution of siliceous microfossils during diagenesis is the most likely source of the silica required for the chert formation. As sediment age increases, the proportion of biogenic silica decreases and authigenic silica increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three phases of volcanism have been recognized in the lower Paleogene sequence of the southwest Rockall Plateau which are related to the onset of seafloor spreading in the NE Atlantic. The earliest, Phase 1, is marked by a sequence of tholeiitic basalts and hyaloclastites which form the dipping reflector sequence in Edoras Basin. Phase 2 is characterized by tuffs and lapilli tuffs of air-fall origin, ranging in composition from basic to intermediate. They were generated by highly explosive igneous activity due to magma-water interaction, and terminate at the level of a major transgression. Subsequently, volcanism reverted to tholeiitic basalt type, producing the thin tuffs and minor basalt flows of Phase 3. Alteration of the volcanic glass and diagenesis of the tuffs and lapilli tuffs has been considerable in many cases, with a large number of diagenetic mineral phases observed, including smectite, celadonite, analcime, phillipsite, clinoptilolite, mordenite, and calcite. Although calcite is the latest observed diagenetic cement, it nevertheless occurred relatively early, in one case totally preserving basaltic glass from alteration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid insoluble coarse fractions of the glacial-interglacial sequence of Hole 552A in the NE Atlantic are made up of varying amounts of terrigenous detritus, biogenic silica, and pyroclastic material, principally volcanic glass. Volcanic ash content varies significantly over the entire interval, and the three North Atlantic ash horizons of Ruddiman and Glover (1972) can be recognized satisfactorily. The terrigenous detritus is of mixed metamorphic-basaltic type and probably originated on the Greenland landmass

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peridotites (diopside-bearing harzburgites) found at 13°N of the Mid-Atlantic Ridge fall into two compositional groups. Peridotites P1 are plagioclase-free rocks with minerals of uniform composition and Ca-pyroxene strongly depleted in highly incompatible elements. Peridotites P2 bear evidence of interaction with basic melt: mafic veinlets; wide variations in mineral composition; enrichment of minerals in highly incompatible elements (Na, Zr, and LREE); enrichment of minerals in moderately incompatible elements (Ti, Y, and HREE) from P1 level to abundances 4-10 times higher toward the contacts with mafic aggregates; and exotic mineral assemblages Cr-spinel + rutile and Cr-spinel + ilmenite in peridotite and pentlandite + rutile in mafic veinlets. Anomalous incompatible-element enrichment of minerals from peridotites P2 occurred at the spinel-plagioclase facies boundary, which corresponds to pressure of about 0.8-0.9 GPa. Temperature and oxygen fugacity were estimated from spinel-orthopyroxene-olivine equilibria. Peridotites P1 with uniform mineral composition record temperature of the last complete recrystallization at 940-1050°C and FMQ buffer oxygen fugacity within the calculation error. In peridotites P2, local assemblages have different compositions of coexisting minerals, which reflects repeated partial recrystallization during heating to magmatic temperatures (above 1200°C) and subsequent reequilibration at temperatures decreasing to 910°C and oxygen fugacity significantly higher than FMQ buffer (delta log fO2 = 1.3-1.9). Mafic veins are considered to be a crystallization product from basic melt enriched in Mg and Ni via interaction with peridotite. The geochemical type of melt reconstructed by the equilibrium with Ca-pyroxene is defined as T-MORB: (La/Sm)_N~1.6 and (Ce/Yb) )_N~2.3 that is well consistent with compositional variations of modern basaltic lavas in this segment of the Mid-Atlantic Ridge, including new data on quenched basaltic glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five heavy mineral associations occur in the Paleocene and Eocene sediments recovered during Leg 81 of the Deep Sea Drilling Project (DSDP) in the SW Rockall area. Association 1, consisting of augite, iddingsite, and olivine, was derived from the basaltic rocks of the northern part of the Rockall Plateau. Association 2 consists of epidote group minerals, including piedmontite, and amphiboles of actinolite, actinolitic hornblende, and magnesio-hornblende compositions, and was derived from the metamorphic basement of south Greenland. Association 3 comprises garnet, augite, apatite, and edenitic and pargasitic amphiboles and has a provenance in the southern Rockall Plateau. Associations 4 (garnet, apatite, edenitic/pargasitic amphiboles) and 5 (garnet, apatite) are intrastratal solution derivatives of Association 3, with successive removal of first pyroxene and then amphibole with increasing depth of burial. Throughout the SW Rockall Plateau area there is a significant change in the spectrum of the above assemblages in the lower part of the Eocene. This change has been noted at Sites 403, 404, 553, and 555 and is defined by the last appearance of Association 2. This level therefore marks the cessation of sediment supply from southern Greenland and is the result of the final separation of Rockall and Greenland immediately prior to magnetic Anomaly 24.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on mafic volcanic rocks from the Bouvet triple junction, which fall into six geochemically distinct groups: (1) N-MORB, the most widespread type, encountered throughout the study area. (2) Subalkaline volcanics, hawaiites and mugearites strongly enriched in lithophile elements and radiogenic isotopes and composing the Bouvet volcanic rise, and compositionally similar basalts and basaltic andesites from the Spiess Ridge, generated in a deeper, fertile mantle region. (3) Relatively weakly enriched basalts, T-MORB derived by the mixing of Type 1 and 2 melts and exposed near the axes of the Mid-Atlantic, Southwest Indian, and America-Antarctic Ridges. (4) Basalts with a degree of trace lithophile element enrichment similar to the Spiess Ridge and Bouvet Island rocks, but higher in K, P, Ti, and Cr. These occur within extensional structures: the rift valley of the Southwest Indian Ridge, grabens of the East Dislocation Zone, and the linear rise between the Spiess Ridge and Bouvet volcano. Their parental melts presumably separated from plume material that spread from the main channels and underwent fluid-involving differentiation in the mantle. (5) A volcanic suite ranging from basalt to rhyolite, characterized by low concentrations of lithophile elements, particularly TiO2, and occurring on the Shona Seamount and other compressional features within the Antarctic and South American plates near the Bouvet triple junction. Unlike Types 1 to 4, which display tholeiitic differentiation trends, this suite is calc-alkaline. Its parental melts were presumably related to the plume material as well but, subsequently, they underwent a profound differentiation involving fluids and assimilated surrounding rocks in closed magma chambers in the upper mantle. Alternatively, the Shona Seamount might be a fragment of an ancient oceanic island arc. (6) Enriched basalts, distinguished from the other enriched rock types in very high P and radiogenic isotope abundances and composing a tectonic uplift near the junction of the three rifts. It thus follows that the main factors responsible for the compositional diversity of volcanic rocks in this region include (i) mantle source heterogeneity, (ii) plume activity, (iii) an intricate geodynamic setup at the triple junction giving rise to stresses in adjacent plate areas, and (iv) the geological prehistory. The slow spreading rate and ensuing inefficient mixing of the heterogeneous mantle material result in strong spatial variations in basaltic compositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wilkes and Aurora basins are large, low-lying sub-glacial basins that may cause areas of weakness in the overlying East Antarctic ice sheet. Previous work based on ice-rafted debris (IRD) provenance analyses found evidence for massive iceberg discharges from these areas during the late Miocene and Pliocene. Here we characterize the sediments shed from the inferred areas of weakness along this margin (94°E to 165°E) by measuring40Ar/39Ar ages of 292 individual detrital hornblende grains from eight marine sediment core locations off East Antarctica and Nd isotopic compositions of the bulk fine fraction from the same sediments. We further expand the toolbox for Antarctic IRD provenance analyses by exploring the application of 40Ar/39Ar ages of detrital biotites; biotite as an IRD tracer eliminates lithological biases imposed by only analyzing hornblendes and allows for characterization of samples with low IRD concentrations. Our data quadruples the number of detrital 40Ar/39Ar ages from this margin of East Antarctica and leads to the following conclusions: (1) Four main sectors between the Ross Sea and Prydz Bay, separated by ice drainage divides, are distinguishable based upon the combination of 40Ar/39Ar ages of detrital hornblende and biotite grains and the e-Nd of the bulk fine fraction; (2) 40Ar/39Ar biotite ages can be used as a robust provenance tracer for this part of East Antarctica; and (3) sediments shed from the coastal areas of the Aurora and Wilkes sub-glacial basins can be clearly distinguished from one another based upon their isotopic fingerprints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 176 built upon the work of ODP Leg 118 wherein the 500-m section that was sampled represented the most complete recovery of an intact portion of lower oceanic crust ever described. During Leg 176, we deepened Hole 735B to >1500 m below seafloor in an environment where gabbroic rocks have been tectonically exposed at the Southwest Indian Ridge. This new expedition extended the remarkable recovery (>85%) that allowed unprecedented investigations into the nature of the lower oceanic crust as a result of Leg 118. Sulfide mineral and bulk rock compositions were determined from samples in the 1000-m section of oceanic gabbros recovered during Leg 176. The sulfide assemblage of pyrrhotite, chalcopyrite, pentlandite, and troilite is present throughout this section, as it is throughout the 500-m gabbroic section above that was sampled during Leg 118. Troilite is commonly present as lamellae, and the only interval where troilite was not observed is from the uppermost 150 m of the section sampled during Leg 118, which is intensely metamorphosed. The common presence of troilite indicates that much of the sulfide assemblage from Hole 735B precipitated from a magmatic system and subsequently underwent low-temperature reequilibration. Evaluation of geochemical trends in bulk rock and sulfides indicates that the combined effects of olivine accumulation in troctolites and high pentlandite to pyrrhotite ratios account for the sporadic bulk rock compositions high in Ni. Bulk rock and sulfide mineral geochemical indicators that are spatially coincident with structural and physical properties anomalies indicate a heretofore unrecognized lithologic unit boundary in this section. Platinum-group element (PGE) compositions were also determined for 36 samples from throughout the section that were recovered during Leg 176. Whereas most samples had low (<0.4 ppb) PGE concentrations, rare samples had elevated PGE values, but no unique common trend between these samples is evident.