162 resultados para Manganese -- Magnetic properties


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this manuscript, we present rock magnetic results of samples recovered during Leg 183. The Leg 183 cores were recovered from six drill sites and display variable rock magnetic properties. The differences in the rock magnetic properties are a function of mineralogy and alteration. Cretaceous subaerial basalt samples with titanomagnetite exhibit a strong Verwey transition in the vicinity of 110 K and have frequency-dependent susceptibility curves that resemble those of synthetic (titano) magnetites. These results are in good agreement with the thermomagnetic characteristics where titanomagnetites with Curie temperatures of ~580°C were identified. The hysteresis ratios suggest that the bulk magnetic grain size is in the psuedo-single-domain boundary. These subaerial basalts experienced high-temperature oxidation and maintained reliable paleomagnetic records. In contrast, the 34-Ma submarine pillow basalts do not show the Verwey transition during the low-temperature experiments. Thermomagnetic analysis shows that the remanent magnetization in this group is mainly carried by a thermally unstable mineral titanomaghemite. The frequency-dependent relationships are opposite of those from the first group and show little sign of titanomagnetite characteristics. Rocks from the third group are oxidized titanomagnetites and have multiple magnetic phases. They have irreversible thermaomagnetic curves and hysteresis ratios clustering toward the multidomain region (with higher Hcr/Hc ratios). The combined investigation suggests that variations in magnetic properties correlate with changes in lithology, which results in differences in the abundance and size of magnetic minerals. The rock magnetic data on Leg 183 samples clearly indicate that titanomagnetite is the dominant mineral and the primary remanence carrier in subaerial basalt. The generally good magnetic stability and other properties exhibited by titanomagnetite-bearing rocks support the inference that the ChRM isolated from the Cretaceous sites were acquired during the Cretaceous Normal Superchron. The stable inclinations identified from these samples are therefore useful for future tectonic studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 160 m mostly turbiditic late Pleistocene sediment sequence (IODP Expedition 308, Hole U1319A) from the Brazos-Trinity intraslope basin system off Texas was investigated with paleo- and rock magnetic methods. Numerous layers depleted in iron oxides and enriched by the ferrimagnetic iron-sulfide mineral greigite (Fe3S4) were detected by diagnostic magnetic properties. From the distribution of these layers, their stratigraphic context and the present geochemical zonation, we develop two conceptual reaction models of greigite formation in non-steady depositional environments. The "sulfidization model" predicts single or twin greigite layers by incomplete transformation of iron monosulfides with polysulfides around the sulfate methane transition (SMT). The "oxidation model" explains greigite formation by partial oxidation of iron monosulfides near the iron redox boundary during periods of downward shifting oxidation fronts. The stratigraphic record provides evidence that both these greigite formation processes act here at typical depths of about 12-14 mbsf and 3-4 mbsf. Numerous "fossil" greigite layers most likely preserved by rapid upward shifts of the redox zonation denote past SMT and sea floor positions characterized by stagnant hemipelagic sedimentation conditions. Six diagenetic stages from a pristine magnetite-dominated to a fully greigite-dominated magnetic mineralogy were differentiated by combination of various hysteresis and remanence parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study is a synthesis of paleomagnetic and mineral magnetic results for Sites 819 through 823 of Ocean Drilling Program (ODP) Leg 133, which lie on a transect from the outer edge of the Great Barrier Reef (GBR) down the continental slope to the bottom of the Queensland Trough. Because of viscous remagnetization and pervasive overprinting, few reversal boundaries can be identified in these extremely high-resolution Quaternary sequences. Some of the magnetic instability, and the differences in the quality of the paleomagnetic signal among sites, can be explained in terms of the dissolution of primary iron oxides in the high near-surface geochemical gradients. Well-defined changes in magnetic properties, notably susceptibility, reflect responses to glacio-eustatic sea-level fluctuations and changes in slope sedimentation processes resulting from formation of the GBR. Susceptibility can be used to correlate between adjacent holes at a given site to an accuracy of about 20 cm. Among-site correlation of susceptibility is also possible for certain parts of the sequences and permits (tentative) extension of the reversal chronology. The reversal boundaries that can be identified are generally compatible with the calcareous nannofossil biostratigraphy and demonstrate a high level of biostratigraphic consistency among sites. A revised chronology based on an optimum match with the susceptibility stratigraphy is presented. Throughout most of the sequences there is a strong inverse correlation both between magnetic susceptibility and calcium carbonate content, and between susceptibility and d18O. In the upper, post-GBR, sections a more complicated type of magnetic response occurs during glacial maxima and subsequent transgressions, resulting in a positive correlation between susceptibility and d18O. Prior to and during formation of the outer-reef barrier, the sediments have relatively uniform magnetic properties showing multidomain behavior and displaying cyclic variations in susceptibility related to sea-level change. The susceptibility oscillations are controlled more by carbonate dilution than by variation in terrigenous influx. Establishment of the outer reef between 1.01 and 0.76 Ma restricted the supply of sediment to the slope, causing a four-fold reduction in sedimentation rates and a transition from prograding to aggrading seismic geometries (see other chapters in this volume). The Brunhes/Matuyama boundary and the end of the transition period mark a change to lower and more subdued susceptibility oscillations with higher carbonate contents. The major change in magnetic properties comes at about 0.4 Ma in the aggrading sequence, which contains prominent sharp susceptibility peaks associated with glacial cycles, with distinctive single-domain magnetite and mixed single-domain/superparamagnetic characteristics. Bacterial magnetite has been found in the sediments, particularly where there are high susceptibility peaks, but its importance has not yet been assessed. A possible explanation for the characteristic pattern of magnetic properties in the post-GBR glacial cycles can be found in terms of fluvio-deltaic processes and inter-reefal lagoonal reservoirs that develop when the shelf becomes exposed at low sea-level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During Leg 125, scientists drilled two serpentinite seamounts: Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc. Grain densities of the serpentinized peridotites range from 2.44 to 3.02 g/cm**3. The NRM intensity of the serpentinized peridotites ranges from 0.01 to 0.59 A/m and that of serpentine sediments ranges from 0.01 to 0.43 A/m. Volume susceptibilities of serpentinized peridotites range from 0.05 * 10**-3 SI to 9.78 * 10**-3 SI and from 0.12 * 10**-3 to 4.34 * 10**-3 SI in the sediments. Koenigsberger ratios, a measure of the relative contributions of remanent vs. induced magnetization to the magnetic anomaly, vary from 0.09 to 80.93 in the serpentinites and from 0.06 to 4.74 in the sediments. The AF demagnetization behavior of the serpentinized peridotites shows that a single component of remanence (probably a chemical remanence carried by secondary magnetite) can be isolated in many samples that have a median destructive field less than 9.5 mT. Multiple remanence components are observed in other samples. Serpentine sediments exhibit similar behavior. Comparison of the AF demagnetization of saturation isothermal remanence and NRM suggests that the serpentinized peridotites contain both single-domain and multidomain magnetite particles. The variability of the magnetic properties of serpentinized peridotites reflects the complexity of magnetization acquired during serpentinization. Serpentinized peridotites may contribute to magnetic anomalies in forearc regions.