132 resultados para MARC format
Resumo:
In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H218O and HDO as tracers in the hydrological cycle of the coupled atmosphere-land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31). A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the d18O in precipitation also shows variations from -4 permil up to 4 permil. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the d18O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil) and also fractionation included in both evaporation and transpiration (from water transport through plants) fluxes. While the isotopic composition of the soil water may change for d18O by up to +8 permil:, the simulated d18O in precipitation shows only slight differences on the order of ±1 permil. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation) database.
Resumo:
River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first collect an unprecedented collection of river flow observations, combining information from three distinct data bases. Observed monthly runoff rates are first tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 11) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950-December 2014) on a 0.5° × 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring.
Resumo:
Potential temperature measured with a SBE37 at 35.862ºN, 5.97ºW at 344 meters Depth. Data expand from September the 30th, 2004 to March the 2nd, 2016. Original measurement frequency was 30 minutes, the data presented here is a subsampling that extract the coldest temperature found each 12 hours. The time vector corresponds with the moment in which this minimun temperature is observed.
Resumo:
Topographic variation, the spatial variation in elevation and terrain features, underpins a myriad of patterns and processes in geography and ecology and is key to understanding the variation of life on the planet. The characterization of this variation is scale-dependent, i.e. it varies with the distance over which features are assessed and with the spatial grain (grid cell resolution) of analysis. A fully standardized and global multivariate product of different terrain features has the potential to support many large-scale basic research and analytical applications, however to date, such technique is unavailable. Here we used the digital elevation model products of global 250 m GMTED and near-global 90 m SRTM to derive a suite of topographic variables: elevation, slope, aspect, eastness, northness, roughness, terrain roughness index, topographic position index, vector ruggedness measure, profile and tangential curvature, and 10 geomorphological landform classes. We aggregated each variable to 1, 5, 10, 50 and 100 km spatial grains using several aggregation approaches (median, average, minimum, maximum, standard deviation, percent cover, count, majority, Shannon Index, entropy, uniformity). While a global cross-correlation underlines the high similarity of many variables, a more detailed view in four mountain regions reveals local differences, as well as scale variations in the aggregated variables at different spatial grains. All newly-developed variables are available for download at http://www.earthenv.org and can serve as a basis for standardized hydrological, environmental and biodiversity modeling at a global extent.
Resumo:
Transient simulations are widely used in studying the past climate as they provide better comparison with any exisiting proxy data. However, multi-millennial transient simulations using coupled climate models are usually computationally very expensive. As a result several acceleration techniques are implemented when using numerical simulations to recreate past climate. In this study, we compare the results from transient simulations of the present and the last interglacial with and without acceleration of the orbital forcing, using the comprehensive coupled climate model CCSM3 (Community Climate System Model 3). Our study shows that in low-latitude regions, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique (with an acceleration factor of 10) and hence, large-scale model-data comparison of surface variables is not hampered. However, in high-latitude regions where the surface climate has a direct connection to the deep ocean, e.g. in the Southern Ocean or the Nordic Seas, acceleration-induced biases in sea-surface temperature evolution may occur with potential influence on the dynamics of the overlying atmosphere. The data provided here are from both accelerated and non-accelerated runs as decadal mean values.