417 resultados para MAGNETOSTRATIGRAPHY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 87Sr/86Sr isotope curve of the middle Eocene to Oligocene was produced from analysis of foraminifera in Ocean Drilling Program Hole 689B, Maud Rise, near the coast of Antarctica. Sediments from the hole are well preserved with no evidence of diagenetic alteration. The sequence is nearly complete from 46.3 to 24.8 Ma, with an average sampling interval of 166 kyr. Excellent magnetostratigraphy in Hole 689B allows calibration to the geomagnetic polarity time scale of Cande and Kent (1992). Marine strontium isotopic ratios were nearly stable from 46.3 to 35.5 Ma, averaging near 0.70773, after which they began to increase. A slow increase began after 40.4 Ma, rising at a rate of only about 8*10**-6/m.y. from base values of 0.707707. From 35.5 Ma to 24.8 Ma the average slope increased to 40*10**-6/m.y. The slope remained constant at least until 24.8 Ma, when the record becomes discontinuous owing to unconformities. We evaluate several possible controls on the marine strontium isotope curve that could have led to the observed growth in 87Sr/86Sr ratios near the Eocene/Oligocene boundary. Three mechanisms are considered, including the onset of Antarctic glaciation, increased mountain building in the Himalayan-Tibetan region, and decreased hydrothermal activity. None of the mechanisms alone seems to adequately explain the increased 87Sr/86Sr ratios during the Oligocene. Glaciation as a weathering agent was too episodic and probably began too late to explain the upturn in marine 87Sr/86Sr ratios. There is evidence that uplift in the Himalayan-Tibetan region began in the Miocene, much too late to control Oligocene strontium isotope ratios. Lastly, hydrothermal flux changes since the Eocene were apparently not great enough alone to account for the rise in marine 87Sr/86Sr ratios. We suggest that a combination of causes, such as decreased hydrothermal activity perhaps followed by increased glaciation and mountain building, might best explain the growth of the marine 87Sr/86Sr curve during the Oligocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early Cenozoic marine carbon isotopic record is marked by a long-term shift from high d13C values in the late Paleocene to values that are 2 to 3 lower in the early Eocene. The shift is recorded in fossil carbonates from each ocean basin and represents a large change in the distribution of 12C between the ocean and other carbon reservoirs. Superimposed upon this long-term shift are several distinct carbon isotopic negative excursions that are also recorded globally. These carbon isotopic 'events' near the Paleocene-Eocene boundary provide strati-graphic information that can facilitate intersite correlations between marine and non-marine sequences. Here we present a detailed marine carbon isotopic stratigraphy across the Paleocene-Eocene boundary that is constrained by calcareous nannofossil and planktonic foraminifera bio-stratigraphy and magnetostratigraphy. We show that several distinct carbon isotopic changes are recorded in uppermost Paleocene and lowermost Eocene marine biogenic carbonate sediments. At least one of these isotopic changes in the ocean's carbon isotopic composition was transmitted to terrestrial carbon reservoirs, including plant biomass via atmospheric CO2. As a consequence of this exchange of 12C between the ocean and terrestrial carbon reservoirs, it is possible to use carbon isotope stratigraphy to correlate the uppermost Paleocene and lowermost Eocene non-fossiliferous terrestrial sediments of the Paris Basin with marine sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 125, scientists drilled Sites 782, 783, 784, and 786 across a transect of the Izu-Bonin forearc near 31°N. Magnetostratigraphy for whole-core and discrete specimens has been integrated with biostratigraphic data and correlated to the geomagnetic polarity time scale. These correlations are good back to the middle Miocene at Sites 783, 784, and 786 and to the late Oligocene at Site 782, but become more tentative in older sediments because of poor recovery and complex magnetizations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed biostratigraphy in Site 1006 based on planktonic foraminifers and nannofossils shows large-scale sedimentation rate variability in the Florida Strait west of the Great Bahama Bank. A 'floating' cyclostratigraphy based mainly on resistivity logs and magnetic susceptibility data has been fixed to the biostratigraphy in the absence of magnetostratigraphy. The strongest orbital cycle present is the precessional beat, which is present in the borehole logs throughout the record. Counting the cycles resulted in an accurate time scale and thus a sedimentation rate time series. Spectral analysis of the sedimentation rate time series shows that the short-term cycle of eccentricity (~125 k.y.) and the long term cycle of eccentricity (~400 k.y.) are pervasive throughout the Miocene record, together with the long-term ~2-m.y. eccentricity cycle. The Great Bahama Bank produced pulses of shallow carbonate input once every precessional (sea level) cycle during the Miocene and perhaps two pulses per cycle in the early Pliocene. The amount of sediment exported in these pulses appears to be controlled by eccentricity modulation of the precessional amplitude and therefore the amplitude of the sea-level rise. Finally, an increase in sedimentation rate just after the Miocene/Pliocene boundary is attributed to a change in the location and strength of sediment drift currents in the Florida Strait due to reorganization of the currents following the closure of the Panama Isthmus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents a new Miocene biostratigraphic synthesis for the high-latitude northeastern North Atlantic region. Via correlations to the bio-magnetostratigraphy and oxygen isotope records of Ocean Drilling Program and Deep Sea Drilling Project Sites, the ages of shallower North Sea deposits have been better constrained. The result has been an improved precision and documentation of the age designations of the existing North Sea foraminiferal zonal boundaries of King (1989) and Gradstein and Bäckström (1996). All calibrations have been updated to the Astronomically Tuned Neogene Time Scale (ATNTS) of Lourens et al. (2004). This improved Miocene biozonation has been achieved through: the updating of age calibrations for key microfossil bioevents, identification of new events, and integration of new biostratigraphic data from a foraminiferal analysis of commercial wells in the North Sea and Norwegian Sea. The new zonation has been successfully applied to two commercial wells and an onshore research borehole. At these high latitudes, where standard zonal markers are often absent, integration of microfossil groups significantly improves temporal resolution. The new zonation comprises 11 Nordic Miocene (NM) Zones with an average duration of 1 to 2 million years. This multi-group combination of a total of 92 bioevents (70 foraminifers and bolboformids; 16 dinoflagellate cysts and acritarchs; 6 marine diatoms) facilitates zonal identification throughout the Nordic Atlantic region. With the highest proportion of events being of calcareous walled microfossils, this zonation is primarily suited to micropaleontologists. A correlation of this Miocene biostratigraphy with a re-calibrated oxygen isotope record for DSDP Site 608 suggests a strong correlation between Miocene planktonic microfossil turnover rates and the inferred paleoclimatic trends. Benthic foraminifera zonal boundaries appear to often coincide with Miocene global sequence boundaries. The biostratigraphic record is punctuated by four main stratigraphic hiati which show variation in their geographic and temporal extent. These are related to the following regional unconformities: basal Neogene, Lower/Middle Miocene ("mid-Miocene unconformity"), basal Upper Miocene and basal Messinian unconformities. Further coring of Neogene sections in the North Sea and Norwegian Sea may better constrain their extent and their effect on the biostratigraphic record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principal paleoceanographic objective of Ocean Drilling Program Leg 115 was to collect a suite of materials that would allow reconstruction of the dynamic features of the late Cenozoic carbonate system in the equatorial Indian Ocean. This goal was achieved with the recovery of sediments from a closely spaced depth transect (1541-4428 m) of five sites (Sites 707 through 711) from on and around the Mascarene Plateau that record the last 50 m.y. of pelagic deposition. More than 2200 measurements of carbonate content are combined here with a highly resolved bio- and magnetostratigraphy to produce the first detailed compilation of bulk, carbonate, and noncarbonate mass accumulation rates (MARs) from the Indian Ocean. These results allow us to recognize three major depositional intervals, each characterized by a distinct depth-dependent pattern of carbonate accumulation: (1) the Paleogene, a time of moderate accumulation rates (0.4-0.7 g/cm**2/1000 yr) and reduced between-site accumulation differences; (2) the early and middle Miocene, a period characterized by greatly reduced carbonate MARs (typically <0.2 g/cm**2/1000 yr) at all sites and a shallow carbonate compensation depth; and (3) the late Miocene to Holocene, a time span marked by the highest bulk and carbonate accumulation rates of the last 50 Ma (1.6-1.8 g/cm**2/1000 yr), and the first appearance of substantial contrasts in carbonate accumulation as a function of the water depth of the drill site. The fundamentally different character of the carbonate system during each of these intervals must represent a regional response to the complex evolution of late Cenozoic oceans and climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleomagnetic measurements were made on 913 samples from 11 holes (626B, 626C, 627B, 628A, 630A, 631A, 632A, 632B, 633A, 634A, and 635B) drilled in and around the Bahamas carbonate bank during Ocean Drilling Program Leg 101. These samples displayed a wide range of magnetic intensities (from about 1.0 A/m to 1.6 * 10**- 6 A/m) and magnetic behavior. Most samples were weakly magnetized and had low mean destructive fields; however, sediments from sections of several holes were strongly magnetic with stable magnetizations. Magnetic-polarity interpretations were made on a Campanian unit from Hole 627B, a mid-Oligocene unit from Hole 628A, and a Plio-Pleistocene section from Hole 633A. Sediments in the upper parts of Holes 627B, 632A, and 633A have high magnetic intensities that decay 2 to 3 orders of magnitude over depths of 5 to 18 mbsf. The pattern of decline of the magnetism and the change in mean destructive fields and geochemical conditions in these holes are consistent with diagenetic dissolution of the magnetic minerals in a suboxic or anoxic-sulfidic environment. Paleolatitudes were calculated from samples from 16 time units in 7 holes and compared to the apparent polar wander path of the North American plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleomagnetic and rock-magnetic analyses from discrete samples of carbonate sites on the Queensland Plateau were used to determine magnetic polarity reversal stratigraphy and the nature of magnetization in these sediments. Magnetic polarity zones were correlated with the geomagnetic polarity time scale in the upper portions of cores at Sites 812 through 814, usually back to a late Pliocene age. Loss of reliable directional data was coincidental with a major decrease in magnetic intensity, below which, no stable polarity zones could be identified. The intensity reduction is either an in-situ alteration of magnetic grains, or an input signal representing progressive increase in the magnetic component of Queensland Plateau sediments. Although not conclusive at this point, the geochemical conditions and differing age of intensity reduction support the former hypothesis. Rock-magnetic analysis of carbonate sediments suggests that ultrafine-grained magnetite or maghemite crystals is an important carrier of remanence and may be biogenic in origin. Application of a recently calibrated anhysteretic remanent magnetization test to assess configuration of single-domain crystal within a natural matrix indicates that cementation (ooze-chalk-limestone) may be important in post-depositional changes affecting magnetostatic grain interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this data report we present results from stable isotope measurements (d13C and d18O) on bulk sediment at several sites located on a transect along a subduction margin offshore Costa Rica (Ocean Drilling Program Sites 1039, 1040, and 1253). Comparison of stable isotope compositions (d13C and d18O) of the pelagic carbonates Subunit U3C between the reference sites (Site 1039 and 1253) and the underthrust section (Site 1040) reveals similar d13C values and minor differences in d18O values within four specific intervals. Isotope stratigraphy was then used to further constrain the shipboard age models based on bio- and magnetostratigraphy. The resulting age models are in agreement with those derived from biostratigraphy and confirm that the sedimentation rate of the lower Subunit 3C is roughly constant on the order of 50 m/m.y. This is in contrast with the postulated very high sedimentation rates at ~12.7 Ma and lower sedimentation rates (~18 m/m.y.) in the lower part of the section between 16 and 13 Ma, as suggested by shipboard magnetostratigraphic datums.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stratotype section for the base of the Miocene is at a reversed (below) to normal (above) magnetic transition that is claimed to represent magnetic chron C6Cn.2n (o). Deep Sea Drilling Project (DSDP) Site 522 is the only location we are aware of that unambiguously records the three normal events of C6Cn. We have quantitatively determined the range of the short-lived nannofossil Sphenolithus delphix and the lower limit of S. disbelemnos in DSDP Holes 522 and 522A in order to calibrate their precise relationship to the magnetostratigraphy and to confirm the completeness of the record at this site. Astronomical tuning of Ocean Drilling Program (ODP) Sites 926, 928, and 929 shows that S. disbelemnos appears at 22.67 Ma and that the entire range of S. delphix is from about 22.98 Ma to 23.24 Ma. Using these ages, linear interpolation in DSDP Site 522 suggests that the age of C6Cn.2n (o) and of the Oligocene-Miocene boundary is 22.92+/-0.04 Ma. Our value, conservatively expressed as 22.9+/-0.1 Ma, is 0.9 m.y. younger than the currently accepted age of the Oligocene-Miocene boundary and of C6Cn.2n (o), which was assigned an age of 23.8 Ma, based on an estimate of 23.8+/-1 Ma for the Oligocene-Miocene boundary. The bulk-sediment carbon isotope data from DSDP Site 522 is correlated to the record from benthic foraminifera at ODP Site 929 to refine the calibration of magnetic reversals from C6Cn.1n (o) to C7n.2n (o) at DSDP Site 522 on the astronomical time scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DSDP Leg 73 sediment cores allow direct calibrations of magnetostratigraphy and biostratigraphy for much of the latest Cretaceous to Cenozoic in the mid-latitude South Atlantic Ocean. A complete record of the Cenozoic was not obtained, however, because strong dissolution, poor core recovery and intense core disturbance have masked the biostratigraphy or magnetostratigraphy over some intervals of all recovered sections. DSDP Leg 73 results show the following correlations: Early/middle Miocene in Chron 16 Oligocene/Miocene within Subchron C6CN Eocene/Oligocene within Subchron C13R Middle/late Eocene top of Chron C17 Early/late Paleocene top of Subchron C27N Cretaceous/Tertiary within Subchron C29R

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During drilling at Sites 759, 760, and 761 of Leg 122 (Exmouth Plateau, northwest Australia), a thick section of Upper Triassic sediments was recovered. Paleomagnetic analyses were made on 398 samples from Holes 759B, 760A, 760B, and 761C. Progressive thermal demagnetization, alternating field demagnetization, or mixed treatment removed an initial unstable component and isolated a characteristic remanent magnetization which is of normal or reversed polarity. The magnetostratigraphic results allow us to propose a magnetic polarity sequence which extends from the upper Carnian to lower Rhaetian. This sequence reveals many more reversals than previously suggested from paleomagnetic studies. The magnetostratigraphic data also allow us to suggest correlations between Sites 759 and 760.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During ODP Leg 123, Sites 765 and 766 were drilled to examine the tectonic evolution, sedimentary history, and paleoceanography of the Argo Abyssal Plain and lower Exmouth Plateau. At each site, the quality of magnetostratigraphic and biostratigraphic records varies because of complicating factors, such as the predominance of turbidites, the presence of condensed horizons, or deposition beneath the CCD. Based primarily on the presence of nannofossils, the base of the sedimentary section at Site 765 was dated as Tithonian. A complete Cretaceous sequence was recovered at this site, although the sedimentation rate varies markedly through the section. The Cretaceous/Tertiary boundary is represented by a condensed horizon. The condensed Cenozoic sequence at Site 765 extends from the upper Paleocene to the lower Miocene. A dramatic increase in sedimentation rate was observed in the lower Miocene, and a 480-m-thick Neogene section is present. The Neogene section is continuous, except for a minor hiatus in the lower Pliocene. The base of the sedimentary section at Site 766 is Valanginian, in agreement with the site's position on marine magnetic anomaly Mil. Valanginian to Barremian sediments are terrigenous, with variable preservation of microfossils, and younger sediments are pelagic, with abundant well-preserved microfossils. Sedimentation rate is highest in the Lower Cretaceous and decreases continually upsection. Upper Cenozoic sediments are condensed, with several hiatuses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment accretion and subduction at convergent margins play an important role in the nature of hazardous interplate seismicity (the seismogenic zone) and the subduction recycling of volatiles and continentally derived materials to the Earth's mantle. Identifying and quantifying sediment accretion, essential for a complete mass balance across the margin, can be difficult. Seismic images do not define the processes by which a prism was built, and cored sediments may show disturbed magnetostratigraphy and sparse biostratigraphy. This contribution reports the first use of cosmogenic 10Be depth profiles to define the origin and structural evolution of forearc sedimentary prisms. Biostratigraphy and 10Be model ages generally are in good agreement for sediments drilled at Deep Sea Drilling Project Site 434 in the Japan forearc, and support an origin by imbricate thrusting for the upper section. Forearc sediments from Ocean Drilling Program Site 1040 in Costa Rica lack good fossil or paleomagnetic age control above the decollement. Low and homogeneous 10Be concentrations show that the prism sediments are older than 3-4 Ma, and that the prism is either a paleoaccretionary prism or it formed largely from slump deposits of apron sediments. Low 10Be in Costa Rican lavas and the absence of frontal accretion imply deeper sediment underplating or subduction erosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This contribution summarizes the biostratigraphy of planktonic foraminifers, calcareous nannofossils, and benthic foraminifers, in combination with the magnetostratigraphy, carbon and oxygen isotope stratigraphy of benthic foraminifers, and CaCO3 stratigraphy for the Maestrichtian through Paleogene calcareous sequences recovered at Sites 689 and 690 on Maud Rise (at about 65°S, eastern Weddell Sea, Antarctica). These data represent the southernmost calciumcarbonate record available for that interval, and thus extend the biostratigraphic and isotopic database to higher latitudes. Sites 689 and 690 form the southernmost anchor of a north-south transect through the Atlantic Ocean for Paleogene biostratigraphy and chemostratigraphy.