191 resultados para Intervals of singularity
Resumo:
The stable isotopic composition of two planktonic foraminifer species (Globigerinoides sacculifer and Neogloboquadrina dutertrei) and two benthic foraminifer species (Cibicidoides wuellerstorfi and Uvigerina peregrina) was measured at sub-orbital resolution through the marine isotope stages (MISs) 10, 11, and 12 (345-460 ka) at Site 1056 on the Blake-Bahama Outer Ridge. Planktonic foraminifers were counted for the interval 405-450 ka at 2-4-kyr resolution. Site 1056 (32°29'N, 76°20'W) is located on the continental slope (water depth: 2167 m) beneath the Gulf Stream. The average rate of sediment accumulation through the interval is 11.4 cm/kyr, but sediment accumulation is much more rapid during glacial intervals (15-17 cm/kyr). The decline in percent carbonate during glacial intervals, and its rise during interglacials, indicates that the increased sediment supply is of terrigenous origin. Low carbonate values and low benthic delta13C, which are both associated with a weak Western Boundary Undercurrent and low North Atlantic Deep Water production, persist for 6 kyr after the benthic delta18O record indicates that ice volume has begun to decrease. Recovery of carbonate and benthic delta13C values is abrupt and rapid. Millennial-scale variation (~3-4 kyr) is apparent in the glacial intervals of the planktonic delta18O records and is more pronounced in a Delta delta18O record, which represents the temperature range in the photic zone. Semi-precessional (10-12-kyr) cycles are apparent in the planktonic deltadelta13C record. The millennial-scale cycles are largely caused by an increase in G. sacculifer delta18O and represent surface warming. They are interpreted as representing periodic increases in westward intensification of the gyre. The semi-precessional cycles are driven by changes in the N. dutertrei delta13C and represent fluctuations in the Gulf Stream itself and therefore likely have a tropical origin. Planktonic foraminifer census counts did not show an expected response to one of the largest glacial/interglacial transitions of the late Pleistocene. The most obvious change was an increase in faunal diversity during MIS 12.2, the interval of maximum delta18O values. This suggests that cool slope water and warm subtropical gyre water penetrated a more sluggish Gulf Stream with greater frequency at this time. The millennial-scale maxima in the Delta delta18O record are accompanied by decreases in diversity, which is consistent with the interpretation of surface warming during these events.
Resumo:
The derivation of a detailed sea-surface paleotemperature curve for the middle Miocene-Holocene (10-0 Ma) from ODP Site 811 on the Queensland Plateau, northeast Australia, has clarified the role of sea-surface temperature fluctuations as a control on the initiation and development of the extensive carbonate platforms of this region. This curve was derived from isotopic analyses of the planktonic foraminifer Globigerinoides ruber, and converted to temperature using the surface-water paleotemperature equation accounting for variations in global ice volume. The accuracy of these data were confirmed by derivation of paleotemperatures using the water column isotopic gradient (Delta delta18O), corrected for salinity and variations in seafloor water mass temperature. Results indicate that during this period surface-water temperatures were, on average, greater than the minimum required for tropical reef growth (20°C; Veron, 1986), with the exception of the late Miocene and earliest early Pliocene (10-4.9 Ma), when there were repeated intervals of temperatures between 18-20°C. Tropical reef growth on the Queensland Plateau was extensive from the early to early middle Miocene (~21-13 Ma), after which reef development began to decline. A lowstand near 11 Ma probably exposed shallower portions of the plateau; after re-immersion near 7 Ma, the areal extent of reef development was greatly reduced (~ 50%). Paleotemperature data from Site 811 indicate that decreased sea-surface temperatures were likely to have been instrumental in reducing the area of active reef growth on the Queensland Plateau. Reduced reefal growth rates continued until the late Pliocene or Quaternary, despite the increase of average sea-surface paleotemperatures to 22-23°C. Studies on modern corals show that when sea-surface temperatures are below ~24°C, as they were from the late Miocene to the Pleistocene off northeast Australia, corals are stressed and growth rates are greatly reduced. Consequently, when temperatures are in this range, corals have difficulty keeping pace with subsidence and changing environmental factors. In the late Pliocene, sedimentation rates increased due to increases in non-reefal carbonate production and falling sea levels. It was not until the mid-Quaternary (0.6-0.7 Ma) that sea-surface paleotemperatures increased above 24°C as a result of the formation of a western Coral Sea warm water pool. Because of age discrepancies, it is unclear exactly when an effective barrier developed on the central Great Barrier Reef; the formation of the warm water pool was likely to have either assisted the formation of this barrier and/or permitted increased coral growth rates. Fluctuations in sea-surface temperature can account for much of the observed spatial and temporal variations of reef growth and carbonate platform distribution off northeast Australia, and therefore we conclude that paleotemperature variations are a critical control on the development of carbonate platforms, and must be considered an important cause of ancient platform "drowning".
Resumo:
Twenty-four manganese nodules from the surface of the sea floor and fifteen buried nodules were studied. With three exceptions, the nodules were collected from the area covered by Valdivia Cruise VA 04 some 1200 nautical miles southeast of Hawaii. Age determinations were made using the ionium method. In order to get a true reproduction of the activity distribution in the nodules, they were cut in half and placed for one month on nuclear emulsion plates to determine the alpha-activity of the ionium and its daughter products. Special methods of counting the alpha-tracks resolution to depth intervals of 0.125 mm. For the first time it was possible to resolve zones of rapid growth (impulse growth) with growth rates, s > 50 mm/106 yr and interruptions in growth. With few exceptions the average rate of growth of all nodules was surprisingly uniform at 4-9 mm/10 yr. No growth could be recognized radioactively in the buried nodules. One exceptional nodule has had recent impulse growth and, in the material formed, the ionium is not yet in equilibrium with its daughter products. Individual layers in one nodule from the Indian Ocean could be dated and an average time interval of t = 2600±400 yr was necessary to form one layer. The alternation between iron and manganese-rich parts of the nodules was made visible by colour differences resulting from special treatment of cut surfaces with HCl vapour. The zones of slow growth of one nodule are relatively enriched in iron. Earlier attempts to find paleomagnetic reversals in manganese nodules have been continued. Despite considerable improvement in areal resolution, reversals were not detected in the nodules studied. Comparisons of the surface structure, microstructure in section and the radiometric dating show that there are erosion surfaces and growth surfaces on the outer surfaces of the manganese nodules. The formation of cracks in the nodules was studied in particular. The model of age-dependent nodule shrinkage and cracking surprisingly indicates that the nodules break after exceeding a certain age and/or size. Consequently, the breaking apart of manganese nodules is a continuous process not of catastrophic or discontinuous origin. The microstructure of the nodules exhibits differences in the mechanism of accretion and accretion rate of material, shortly referred to as accretion form. Thus non-directional growth inside the nodules as well as a directional growth may be observed. Those nodules with large accretion forms have grown faster than smaller ones. Consequently, parallel layers indicate slow growth. The upper surfaces of the nodules, protruding into the bottom water appear to be more prone to growth disturbances than the lower surfaces, immersed in the sediment. Features of some nodules show, that as they develop, they neither turned nor rolled. Yet unknown is the mechanism that keeps the nodules at the surface during continuous sedimentation. All in all, the nodules remain the objects of their own distinctive problems. The hope of using them as a kind of history book still seems to be very remote.
Resumo:
Time-series of varve properties and geochemistry were established from varved sediments of Lake Woserin (north-eastern Germany) covering the recent period AD 2010-1923 and the Mid-Holocene time-window 6400-4950 varve years before present (vyr BP) using microfacies analyses, X-ray fluorescence scanning (µ-XRF), microscopic varve chronology and 14C dating. The microscopic varve chronology was compared to a macroscopic varve chronology for the same sediment interval. Calcite layer thickness during the recent period is significantly correlated to increases in local annual precipitation (r=0.46, p=0.03) and reduced air-pressure (r=-0.72, p<0.0001). Meteorologically consistent with enhanced precipitation at Lake Woserin, a composite 500 hPa anomaly map for years with >1 standard deviation calcite layer thickness depicts a negative wave train air-pressure anomaly centred over southern Europe, with north-eastern Germany at its northern frontal zone. Three centennial-scale intervals of thicker calcite layers around the Mid-Holocene periods 6200-5900, 5750-5400 and 5300-4950 vyr BP might reflect humid conditions favouring calcite precipitation through the transport of Ca2+ ions into Lake Woserin, synchronous to wetter conditions in Europe. Calcite layer thickness oscillations of about 88 and 208 years resemble the solar Gleissberg and Suess cycles suggesting that the recorded hydroclimate changes in north-eastern Germany are modified by solar influences on synoptic-scale atmospheric circulation. However, parts of the periods of thicker calcite layers around 5750-5400 and 5200 vyr BP also coincide to enhanced human catchment activity at Lake Woserin. Therefore, calcite precipitation during these time-windows might have further been favored by anthropogenic deforestation mobilizing Ca2+ ions and/or lake eutrophication.
Resumo:
Variations in the sediment input to the Namaqualand mudbelt during the Holocene are assessed using an integrative terrestrial to marine, source to sink approach. Geochemical and Sr and Nd isotopic signatures are used to distinguish fluvial sediment source areas. Relative to the sediments of the Olifants River, craton outcrops in the northern Orange River catchment have a more radiogenic Sr and a more unradiogenic Nd isotopic signature. Furthermore, upper Orange River sediments are rich in heavier elements such as Ti and Fe derived from the chemical weathering of Drakensberg flood basalt. Suspension load signatures change along the Orange River's westward transit as northern catchments contribute physical weathering products from the Fish and Molopo River catchment area. Marine cores offshore of the Olifants (GeoB8323-2) and Orange (GeoB8331-4) River mouths show pulses of increased contribution of Olifants River and upper Orange River input, respectively. These pulses coincide with intervals of increased terrestrial organic matter flux and increased paleo-production at the respective core sites. We attribute this to an increase in fluvial activity and vegetation cover in the adjacent catchments during more humid climate conditions. The contrast in the timing of these wet phases in the catchment areas reflects the bipolar behavior of the South African summer and winter rainfall zones. While rainfall in the Orange River catchment is related to southward shifts in the ICTZ, rainfall in the Olifants catchment is linked to northward shifts in Southern Hemisphere Westerly storm tracks. The later may also have increased southern Benguela upwelling in the past by reducing the shedding of Agulhas eddies into the Atlantic. The high-resolution records of latitudinal shifts in these atmospheric circulation systems correspond to late Holocene centennial-millennial scale climate variability evident in Antarctic ice core records. The mudbelt cores indicate that phases of high summer rainfall zone and low winter rainfall zone humidity (at ca. 2.8 and 1 ka BP) may be synchronous with Antarctic warming events. On the other hand, dry conditions in the summer rainfall zone along with wet conditions in the winter rainfall zone (at ca 3.3, 2 and 0.5 ka BP) may be associated with Antarctic cooling events.
Resumo:
Distribution of diatoms and planktonic and benthic foraminifers, as well as correlation of components of sandy grain size fraction were studied in the Quaternary sediment core LV28-42-5 (720 cm long) col¬lected on the southeastern slope (1045 m depth) of the Institute of Oceanology Rise, Sea of Okhotsk. This study allowed to reconstruct principle features of paleoceanographic evolution. In the course of penultimate and last continental glaciations (isotope stages 6 and 4-2) and during the later period of the last interglacial (substages 5.d-5.a) the following conditions were characteristic of this area: low temperatures of surface water, terrigenous sediment accumulation including coarse grained ice-rafted material, minimum bioproductivity and microfossil content in sediments, low sea level, reduced water exchange with the ocean, low position of old deep Pacific water. During the interglacial optimum (substage 5.e), as well as in the last deglaciation and Holocene (stage 1) water temperature and bioproductivity increased, sea level rose, and active surface water exchange between the Sea of Okhotsk and the Pacific Ocean and the Sea of Japan took place. This resulted in intensive inflow of the old deep Pacific water into the Sea of Okhotsk and elevation of its upper boundary by few hundred meters. During the later intervals of these warm periods a dichothermal structure of the upper water layer formed and diatom oozes accumulated.
Resumo:
Available overwash records from coastal barrier systems document significant variability in North Atlantic hurricane activity during the late Holocene. The same climate forcings that may have controlled cyclone activity over this interval (e.g., the West African Monsoon, El Niño-Southern Oscillation (ENSO)) show abrupt changes around 6000 yrs B.P., but most coastal sedimentary records do not span this time period. Establishing longer records is essential for understanding mid-Holocene patterns of storminess and their climatic drivers, which will lead to better forecasting of how climate change over the next century may affect tropical cyclone frequency and intensity. Storms are thought to be an important mechanism for transporting coarse sediment from shallow carbonate platforms to the deep-sea, and bank-edge sediments may offer an unexplored archive of long-term hurricane activity. Here, we develop this new approach, reconstructing more than 7000 years of North Atlantic hurricane variability using coarse-grained deposits in sediment cores from the leeward margin of the Great Bahama Bank. High energy event layers within the resulting archive are (1) broadly correlated throughout an offbank transect of multi-cores, (2) closely matched with historic hurricane events, and (3) synchronous with previous intervals of heightened North Atlantic hurricane activity in overwash reconstructions from Puerto Rico and elsewhere in the Bahamas. Lower storm frequency prior to 4400 yrs B.P. in our records suggests that precession and increased NH summer insolation may have greatly limited hurricane potential intensity, outweighing weakened ENSO and a stronger West African Monsoon-factors thought to be favorable for hurricane development.
Resumo:
A high-resolution record of radiolarian faunal changes from Site Y8 south of the Subtropical Front (STF), offshore eastern New Zealand, provides insight into the paleoceanographic history of the last 265 kyrs. Quantitative analysis of radiolarian paleotemperature indicators and radiolarian-based sea surface temperature (SST) estimates reveal distinct shifts during glacial-interglacial (G-I) climate cycles encompassing marine isotope stages (MIS) 8-1. Faunas at Site Y8 are abundant and diverse and consist of a mixture of species typical of the subantarctic, transitional and subtropical zones which is characteristic of subantarctic waters just south of the STF. During interglacials, diverse radiolarian faunas have increased numbers of warm-water taxa (not, vert, similar 15%) while cool-water taxa decrease to not, vert, similar 11% of the assemblage. Warmest climate conditions occurred during MIS 5.5 and the early Holocene Climatic Optimum (HCO) at the onset of MIS 1 where SSTs reach maxima of 12.8 and 12.9 °C, respectively. This suggests that temperatures during the HCO were comparable to the Eemian, one of the warmest interglacial intervals of the Late Quaternary. Glacials are characterized by less diverse radiolarian faunas with cool-water taxa increasing to 49% of the assemblage. Coolest climate conditions occurred in MIS 4 and 2 where SSTs are reduced to 5.4 °C and 4.3 °C, respectively. Radiolarian faunal changes and SST estimates clearly identify major water masses and oceanic fronts in the offshore eastern New Zealand area. During warmest MIS 5.5 and early MIS 1 substantial influence of northern-sourced Subtropical Surface Water (STW) is evident at Site Y8. This implies southward incursions of STW around the eastern crest of Chatham Rise with the STF displaced towards higher latitudes and spinning off eddies as far south as Campbell Plateau. Additionally, increased flow of the Southland Current (SC) might have enhanced the local occurrence of warm-water radiolarians derived from the subtropical Tasman Sea. Coolest glacials are marked by a strong inflow of cool, southern-sourced waters at Site Y8 indicating a more vigorous flow along the Subantarctic Front (SAF).
Resumo:
A high resolution study of authigenic Be isotopes (10Be and 9Be) combined with continuous relative paleointensity records has been performed along the same marine sedimentary sequences from the Portuguese margin (NE Atlantic) covering the past 300 kyr in order to assess relationships between geomagnetic moment variations and 10Be production rate variations. A careful examination of the various ways of taking into account environmental disturbing effects on the authigenic 10Be concentration leads to the conclusion that the most reliable proxy of cosmonuclide production rates is presently the authigenic 10Be/9Be ratio. Eight intervals of significant authigenic 10Be/9Be enhancement evidence geomagnetic moment drops related to global paleomagnetic excursions, some being already admitted, others being proposed as new geomagnetic features. Since, unlike sedimentary magnetic remanence, the authigenic 10Be/9Be records dipole moment variations without significant acquisition delay, it provides better constraints on their timing. Comparison of 10Be/9Be and benthic delta18O records from the same cores suggests that dipole moment lows preferentially occurred during or at the end of interglacial episodes, with a quasi-period of 100 kyr.
Resumo:
Pelagic sedimentation during the Early Cretaceous at Site 603 produced alternations of laminated marly limestone and bioturbated limestone-a facies typical of the "Blake-Bahama Formation" of the western Atlantic. This limestone is a nannofossil micrite, rich in calcified radiolarians, with variable amounts of organic matter, pyritized radiolarian tests, fish debris, and micaceous silt. The laminated marly limestone layers are enriched in organic matter when compared with the intervals of bioturbated limestone. The organic carbon is predominantly terrestrial plant debris; where the organic-carbon content is in excess of 1%, there is also a significant marine-derived component. Laminations can result either from bands of alternately enriched and depleted opaque material and clay, or from bands of elongate lenses (microflasers) of micrite, which could be plastically deformed pellets or diagenetic features. The alternating intervals of laminated and bioturbated structures may have resulted from combined changes in surface productivity, in the influx of terrigenous organic matter, and in the intensity of bottom circulation, which led to episodic oxygen depletion in the bottom water and sediments. Variations in the relative proportions of laminated clay-rich and bioturbated lime-rich limestone and in the development of cycles between these structures make it possible to subdivide the Lower Cretaceous pelagic facies into several subunits which appear to be regional in extent. Bioturbated limestone is dominant in the Berriasian, laminated marly limestone in the Valanginian and Barremian-lower Aptian, and well-developed alternations between these end members in the Hauterivian. The Hauterivian to lower Aptian sediments contain abundant terrigenous clastic turbidites associated with a submarine fan complex. These changes in the general characteristics of the pelagic sediment component of the Blake-Bahama Formation at Site 603 are synchronous with those in the Blake-Bahama Basin (Sites 534 and 391) to the south. Carbonate sedimentation ended in the early Aptian, probably because of a regional shoaling of the carbonate compensation depth.
Resumo:
Assessing the habitability of deep-sea sediments undergoing compaction, compression, and subduction at convergent margins adds to our understanding of the limits of the terrestrial biosphere. In this work, we report exploratory biomarker data on sediments obtained at Ocean Drilling Program (ODP) Sites 1253, 1254, and 1255 during drilling at the Costa Rica subduction trench and forearc sedimentary wedge. The samples selected for postcruise biomarker analyses were located within intervals of potentially enhanced fluid flow within the décollement and sedimentary wedge fault zones (Sites 1254 and 1255) and within basal carbonates at the reference site (Site 1253). The passage of fluids that are geochemically distinct from ambient interstitial water provides a disequilibrium setting that may enhance habitability. Biomarker data show low levels of microbial biomass in subseafloor sediments sampled at the Costa Rica convergent margin as deep as ~370 meters below seafloor.
Resumo:
Piston cores from the continental margin off Nova Scotia show up to four discrete intervals of "brick-red sandy mud", which are up to 20 cm thick. The ages of these intervals are bracketed by several radiocarbon dates, and three fall in the range 12.5-14.1 ka (radiocarbon years with -0.4 kyr reservoir correction). The youngest dates from ~10.4 ka, placing it within the Younger Dryas. The distribution of the beds and their petrographic character indicate a source in the Gulf of Saint Lawrence. The grain size of these beds suggests that they comprise a coarse component transported by ice rafting that diminishes distally and a fine component that represents suspension fallout from a surface plume and resulting nepheloid layers. Graded brick-red beds in some cores were probably redeposited from turbidity currents. The lowermost bed on the Laurentian Fan and East Scotian Rise is immediately overlain by a carbonate-rich interval that can be identified all around the margin of the Grand Banks. This interval is correlated with detrital carbonate bed DC-1 in the Labrador Sea and Heinrich event H1 in the North Atlantic. The sequential occurrence of the two beds suggests that they may be a response to the same trigger, probably sea level rise, but that the Gulf of Saint Lawrence source was more easily destabilized.
Resumo:
The magnetic susceptibility of loess and paleosols in central China represents a proxy climate index closely related to past changes of precipitation and vegetation, and thus to summer monsoon intensity. Time series of magnetic susceptibility constructed for three loess-paleosol sequences in the southern part of the Chinese Loess Plateau document the history of summer monsoon variation during the last 130,000 yr. They correlate closely with the oxygen isotope record of stages 1 to 5 in deep-sea sediments. Soils were forming during intervals of strong summer monsoon, whereas loess units were deposited at times of reduced monsoon intensity. The Chinese loess-paleosol sequence can thus be viewed as a proxy record of Asian monsoon variability extending over the last 2.5 myr.
Resumo:
We determined phosphorus (P) concentrations in Leg 138 sediment samples from Sites 844, 846, and 851, using a sequential extraction technique to identify the P associated with five sedimentary components. Total concentrations of P (sum of the five components) ranged from 4 to 35 µmol P/g sediment, with mean values relatively similar between the three sites (11, 14, and 12 for Sites 844,846, and 851, respectively). Authigenic/biogenic P was the most important component in terms of percentage of total P (about 75%), with iron-bound P (13%), adsorbed P (2%-9%), and organic P (4%) of secondary importance; detrital P was a minor P sink (1%) in these sediments. Profiles of adsorbed P and iron-bound P show decreasing concentrations with age, indicating that these components have been affected by diagenesis and reorganization of P. A peak in iron-bound P may reflect higher fluxes of hydrothermally derived Fe to eastern equatorial Pacific Ocean sediments from 11 to 8 Ma. Lower detrital P values for western Site 851 reflect a greater distance of this site from a terrigenous source area, compared to that of Sites 844 and 846. Phosphorus mass accumulation rates (P-MARs; units of µmol P/cm**2/k.y.) were calculated using total P concentrations (not including the minor and oceanically unreactive detrital P component) and sedimentation rates and dry-bulk densities averaged over time intervals of 0.5 m.y. P-MARs generally decrease from 17 Ma to the present. Eastern transect Sites 844 and 846 display a decrease in P-MARs from about 30 to 10 in the interval from 17 to 8 Ma, while western transect Site 851 is highly variable during this interval. P-MARs increase to about 45 and stay relatively high from 8 to 6 Ma, then decrease toward the present to some of the lowest values of the record (about 10). The general trend of high P-MARs at about 6 Ma and decreasing values toward the present is correlated with other geochemical and sedimentary trends through this interval and may reflect (1) a change in net sediment and P burial, (2) a reorganization of fluxes with no change of net burial, or (3) a combination of the two.
Resumo:
The marine isotopic stage 3 (MIS3) at Ocean Drilling Program (ODP) Site 1060 (Gulf Stream) shows both sharp onset and end of interstadials, the existence of very short lived warm events during stadials, and points to differences in detail between the sea surface temperature (SST) record from the western North Atlantic and the atmospheric temperature record inferred from d18O in Greenland ice. Investigating MIS3 and obtaining comparable data from other locations appears crucial. The eastern Atlantic provides well-documented records of climate changes. We have selected a core from off Portugal and use it to examine Dansgaard/Oeschger events (D/O) at centennial-scale resolution (139 years on average between two data points). We have obtained a faunal data set for core MD01-2444, 37°N, 10°W, 2600 m water depth and use a group of species (Globigerina bulloides + Globigerinita glutinata) as a proxy of upwelling intensity driven by trade winds intensity changes. We tentatively relate the variation of this group to a North Atlantic Oscillation-like phenomenon (NAO) off Portugal. We observe that it resembles the rainfall index in the Caribbean as recorded at ODP Site 1002 (Cariaco Basin) which traces the Intertropical Convergence Zone (ITCZ) location through changes of terrigenous inputs. The driest intervals (ITZC to the south) at Site 1002 correspond to intervals of increased upwelling in MD01-2444 as well as the driest periods identified during stadials on similar cores in the area. Because the ITZC to the south is consistent with an El Niño-Southern Oscillation (ENSO+) situation, our study suggests a positive correlation between ENSO-like conditions and NAO-like conditions at a millennial timescale. During interstadial intervals when increased wetness over Cariaco is recorded (ITCZ to the north) and the upwelling in MD01-2444 is decreased, we see from both SSTs and faunal tropical indicators that MD01-2444 site is warm. In addition, interstadials are equally warm through each so-called Bond cycle. This contrasts with the Greenland Ice Core Project (GRIP) record where interstadial peaks are successively cooler through each Bond cycle. This record confirms a link between tropical climate linked to ITCZ position and the climate of southern Europe at millennial timescales, in spite of showing a very good correlation with polar latitudes (GRIP) through d18O on Globigerina bulloides. In addition, because the warmest SSTs and the d18O on G. bulloides are so remarkably different, our work points to changes in seasonality as a strong control over the climatic pattern of the North Atlantic area and the marked influence of winter conditions.