141 resultados para Immunity from seizure of State assets
Resumo:
Causes of change in deep water delta13C can be either global or local in extent. Global causes include (1) climatically-induced changes in the amount of terrestrial biomass which alter the average carbon isotopic composition of the oceanic reservoir (Shackleton, 1977), and (2) erosion and deposition of organic-rich, continental shelf sediments during sea level fluctuations which change the mean oceanic carbon: phosphorus ratio (Broecker, 1982 doi:10.1016/0079-6611(82)90007-6). Regional gradients of delta13C are created by remineralization of organic detritus within the deep ocean itself thus reflecting the distribution of water masses and modern thermohaline flow. Changes in a single geological record of benthic foraminiferal delta13C can result from any combination of these global and abyssal circulation effects. By sampling a large number of cores collected over a wide bathymetric range yet confined to a small geographical region we have minimized the ambiguity. We can assume that each delta13C record was equally affected by global causes of delta13C variation. The differences seen between the delta13C records must, therefore, reflect changes in the distribution of delta13C in the deep ocean. We interpret these differences in distribution in terms of changes in the ocean's abyssal circulation. Benthic foraminiferal carbon isotopic evidence from a suite of Sierra Leone Rise cores indicates that the deeper parts of the eastern Atlantic basins underwent a reduction in [O2] during the maximum of the last glaciation. Reduced advection of O2-rich deep water through low-latitude fracture zones, associated with increased delivery of organic matter to the deep ocean, lowered the delta13C of deep water SumCO2 at all depths below the sill separating the eastern and western Atlantic basins (Metcalf et al., 1964 doi:10.1016/0011-7471(64)91078-2). This decreased advection into the eastern Atlantic Ocean coincides with the overall decrease in deep water production in the North Atlantic during the last glacial maximum (Curry and Lohmann, 1982 doi:10.1016/0033-5894(82)90071-0; Boyle and Keigwin, 1982 doi:10.1126/science.218.4574.784; Schnitker, 1979 doi:10.1016/0377-8398(79)90020-3; Streeter and Shackleton, 1979 doi:10.1126/science.203.4376.168).
Resumo:
We have found trace inclusions of Ni-rich magnesiowüstite within grains of magnesioferrite spinel recovered from Cretaceous/Tertiary boundary sediments from DSDP Site 596, South Pacific (23°51.20'S, 169°39.27'W) and DSDP Site 577, North Pacific (3°6.51'N, 157°43.40'E). Measured compositions of these inclusions range from (Mg_0.85Ni_0.74Fe_0.17)O to (Mg_0.74Ni_0.09Fe_0.17)O. Coexisting magnesioferrite and magnesiowüstite can only crystallize from ultramafic, refractory, Mg-rich liquids with Mg/Si > 2 (atom ratio). Such liquid compositions cannot form as a result of fractional crystallization and are unknown to occur as a result of terrestrial igneous processes or meteoroid ablation. We infer that these minerals crystallized from liquid droplets that equilibrated with silicate vapor at high temperatures (probably >2300°C), resulting in fractionation of volatile SiO2 from more refractory MgO. The most plausible source of this high-temperature vapor is in the fireball of the major impact event that terminated the Cretaceous.