348 resultados para Ice storage studies
Resumo:
Diversity of endolithic Dry Valley rock microorganisms was studied by evaluating the presence of morphotypes in enrichments. Storage of rock samples for 16 h over dry ice affected the diversity of endolithic organisms, especially that of algae and fungi. Diversity in various samples depended on rock location and exposure, on the rock type, and to some extent on the pH of the pulverized rock samples. In most cases sandstone contained more morphotypes than dolerite or granite. Presence of many different phototrophs resulted in greater diversity of the heterotrophs in the enrichments. Samples from Linnaeus Terrace and Battleship Promontory had higher morphotype (MT) numbers than those from more exposed sites such as New Mountain, University Valley, Dais, or Mt. Fleming. Beacon sandstone (13 samples) from Linnaeus Terrace varied greatly with respect to MT numbers, although the pH values ranged only from 4.2-5.3. The highest MT number of 24 per sample was obtained from the upper surface of a flat boulder tilted to the North. Only two MT's were found in a hard sandstone sample from the wind-exposed and more shaded east side of the Terrace. 15 sandstone samples from Battleship Promontory contained more diverse populations: there occurred a total of 131 different MT's in these samples as compared to only 68 in Linnaeus Terrace samples. Cysts of colorless flagellates were found in some Battleship Promontory samples; rnost samples were populated with a wealth of different cyanobacteria. Studies on the distribution of actinomycete morphotypes in Linnaeus Terrace sandstone revealed great differences between individual boulders. Identification tests and lipid analyses made with representative strains of the isolated 1500 pure cultures led to genus names such as Caulobacter, Blastobacter, Hyphomicrobium, Micrococcus, Arthrobacter, Brevibacterium, Corynebacterium, Bifidobacterium, Mycobacterium, Nocardia (Amycolata), Micromonospora, Streptomyces, Blastococcus, and Deinococcus. Our data demonstrate the great diversity of Antarctic endolithic microbial populations.
Resumo:
Pack ice in the Bellingshausen Sea contained moderate to high stocks of microalgal biomass (3-10 mg Chl a/m**2) spanning the range of general sea-ice microalgal microhabitats (e.g., bottom, interior and surface) during the International Polar Year (IPY) Sea Ice Mass Balance in the Antarctic (SIMBA) studies. Measurements of irradiance above and beneath the ice as well as optical properties of the microalgae therein demonstrated that absorption of photosynthetically active radiation (PAR) by particulates (microalgae and detritus) had a substantial influence on attenuation of PAR and irradiance transmission in areas with moderate snow covers (0.2-0.3 m) and more moderate effects in areas with low snow cover. Particulates contributed an estimated 25 to 90% of the attenuation coefficients for the first-year sea ice at wavelengths less than 500 nm. Strong ultraviolet radiation (UVR) absorption by particulates was prevalent in the ice habitats where solar radiation was highest - with absorption coefficients by ice algae often being as large as that of the sea ice. Strong UVR-absorption features were associated with an abundance of dinoflagellates and a general lack of diatoms - perhaps suggesting UVR may be influencing the structure of some parts of the sea-ice microbial communities in the pack ice during spring. We also evaluated the time-varying changes in the spectra of under-ice irradiances in the austral spring and showed dynamics associated with changes that could be attributed to coupled changes in the ice thickness (mass balance) and microalgal biomass. All results are indicative of radiation-induced changes in the absorption properties of the pack ice and highlight the non-linear, time-varying, biophysical interactions operating within the Antarctic pack ice ecosystem.
Resumo:
The feeding strategies of Calanus hyperboreus, C. glacialis, and C. finmarchicus were investigated in the high-Arctic Svalbard region (77-81 °N) in May, August, and December, including seasons with algal blooms, late- to post-bloom situations, and unproductive winter periods. Stable isotope and fatty acid trophic marker (FATM) techniques were employed together to assess trophic level (TL), carbon sources (phytoplankton vs. ice algae), and diet of the three Calanus species. In addition, population development, distribution, and nutritional state (i.e. storage lipids) were examined to estimate their population status at the time of sampling. In May and August, the vertical distribution of the three Calanus species usually coincided with the maximum algal biomass. Their stable isotope and fatty acid (FA) composition indicated that they all were essentially herbivores in May, when the algal biomass was highest. Their FA composition, however, revealed different food preferences. C. hyperboreus had high proportions of 18:4n3, suggesting that it fed mainly on Phaeocystis, whereas C. glacialis and C. finmarchicus had high proportions of 16:4n1, 16:1n7, and 20:5n3, suggesting diatoms as their major food source. Carbon sources (i.e. phytoplankton vs. ice algae) were not possible to determine solely from FATM techniques since ice-diatoms and pelagic-diatoms were characterised by the same FA. However, the enriched d13C values of C. glacialis and C. finmarchicus in May indicated that they fed both on pelagic- and ice-diatoms. Patterns in absolute FA and fatty alcohol composition revealed that diatoms were the most important food for C. hyperboreus and C. glacialis, followed by Phaeocystis, whereas diatoms, Phaeocystis and other small autotrophic flagellates were equally important food for C. finmarchicus. During periods of lower algal biomass, only C. glacialis exhibited evidence of significant dietary switch, with a TL indicative of omnivory (mean TL=2.4). Large spatial variability was observed in population development, distribution, and lipid store sizes in August. At the northernmost station at the southern margin of the Arctic Ocean, the three Calanus species had similarly low lipid stores as they had in May, suggesting that they ascended later in the year. In December, relatively lipid-rich specimens had TL similar to those during the peak productive season (TL~2.0), suggesting that they were hibernating and not feeding on the available refractory material available at that time of the year. In contrast, lipid-poor specimens in December had substantially high TL (TL=2.5), suggesting that they were active and possibly were feeding.
Resumo:
Ice coring and snow cover observations have been carried out at 3 sites in Nordaustlandet, Svalbard since 1995. The results of stratigraphic analyses, and chemical and d18O analyses from Vestfonna and Austfonna cores are presented here. The results from these sites show that most of the chemical constituents contained in the initial snow cover still remained in the ice cores, although re-distribution of them by melt water percolation had occurred. Anthropogenic increases in trace metals, sulfate and nitrate since about 1950 are detected. This suggests that ice-core chemistry records from Nordaustlandet, Svalbard, can be useful to reconstruct past atmospheric conditions. In addition to chemical records, records, that correlate well with the temperature records in Svalbard, can be used to reconstruct past temperature changes.
Resumo:
A three-year particle flux record from the eastern Fram Strait, between Greenland and Svalbard, revealed a rather untypical seasonal flux pattern compared to other particle flux studies from the Nordic Seas. In the eastern Fram Strait this pattern is characterised by a sudden four- to six-fold increase of the particle flux in January, when no daylight is available to support any biological productivity. Comparison with sea-ice distribution maps led to the conclusion that the sudden increase in the flux is due to ice-rafted detritus released from sea ice, which originated from the Svalbard archipelago and from the northern Barents Sea. Detailed grain size analyses of the silt fraction indicated the >10 µm fraction of the lithogenic matter to be clearly enriched due to IRD input. Even more important is the observation that lithogenic material >40 µm occurs exclusively during the ice-rafting event and, therefore, appears to be a suitable indicator for IRD transported on sea ice. Thus, in addition to coarse IRD (e.g. >500 µm), which is mainly derived from icebergs, the analysis of fine IRD >40 µm in deep-sea sediments can be used to reconstruct paleo-sea-ice extensions.
Resumo:
Polynyas in the Laptev Sea are examined with respect to recurrence and interannual wintertime ice production.We use a polynya classification method based on passive microwave satellite data to derive daily polynya area from long-term sea-ice concentrations. This provides insight into the spatial and temporal variability of open-water and thin-ice regions on the Laptev Sea Shelf. Using thermal infrared satellite data to derive an empirical thin-ice distribution within the thickness range from 0 to 20 cm, we calculate daily average surface heat loss and the resulting wintertime ice formation within the Laptev Sea polynyas between 1979 and 2008 using reanalysis data supplied by the National Centers for Environmental Prediction, USA, as atmospheric forcing. Results indicate that previous studies significantly overestimate the contribution of polynyas to the ice production in the Laptev Sea. Average wintertime ice production in polynyas amounts to approximately 55 km3 ± 27% and is mostly determined by the polynya area, wind speed and associated large-scale circulation patterns. No trend in ice production could be detected in the period from 1979/80 to 2007/08.
Resumo:
Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81°N and 83°N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms.