129 resultados para Homogeneous fluids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analysed the concentrations of Li, K, Rb, Cs, and B, and the isotopic ratios of Li and B of a suite of pore fluids recovered from ODP Sites 1037 (Leg 169; Escanaba Trough) and 1034 (Leg 169S; Saanich Inlet). In addition, we have analysed dissolved K, Rb, and Cs concentrations for estuarine mixing of the Ganges-Brahmaputra river system. Together, these data sets have been used to assess the role of sediments in the marine geochemical cycles of the alkali elements and boron. Uptake onto clay minerals during estuarine mixing removes 20-30% of the riverine input of dissolved Cs and Rb to the oceans. Prior to this study, the only other recognised sink of Rb and Cs was uptake during low-temperature alteration of the oceanic crust. Even with this additional sink there is an excess of inputs over outputs in their modern oceanic mass balance. Pore fluid data show that Li and Rb are transferred into marine sediments during early diagenesis. However, modeling of the Li isotope systematics of the pore fluids from Site 1037 shows that seawater Li taken up during marine sedimentation can be readily returned to solution in the presence of less hydrated cations, such as NH4+. This process also appears to result in high concentrations of pore fluid Cs (relative to local seawater) due to expulsion of adsorbed Cs from cation exchange sites. Flux calculations based on pore fluid data for a series of ODP sites indicate that early diagenesis of clay sediments removes around 8% of the modern riverine input of dissolved Li. Although NH4+-rich fluids do result in a flux of Cs to the oceans, on the global scale this input only augments the modern riverine Cs flux by ~3%. Nevertheless, this may have implications for the fate of radioactive Cs in the natural environment and waste repositories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of sedimentary organic matter blanketing midocean ridge crests has a potentially strong impact on metal transport in hydrothermal vent fluids. To constrain the role of organic matter in metal mobility during hydrothermal sediment alteration, we reacted organic-rich diatomaceous ooze from Guaymas Basin, Gulf of California, and organic-poor hemipelagic mud from Middle Valley, northern Juan de Fuca Ridge, with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity, at 275° to 400°C, 350 to 500 bars, and initial fluid: sediment mass ratios ranging from 1.6 to 9.8. Reaction of these fluids with both sediment types released CO2 and high concentrations of ore-forming metals (Fe, Mn, Zn, Pb) to solution. Relatively low concentrations of Cu were observed in solution and likely reflect the reducing conditions that resulted from the presence of sedimentary organic matter. Both the concentrations of CO2 and dissolved metals were lower in fluids reacted with Middle Valley sediment compared with aqueous concentrations in fluids reacted with Guaymas Basin sediment. During alteration of both sediment types, metal concentrations varied strongly as a function of temperature, increasing by up to an order of magnitude over the 75°C range of each experiment. Major element fluid chemistry and observed alteration assemblages suggest that during hydrothermal alteration of organic-lean sediment from Middle Valley a feldspar-quartz-illite mineral assemblage buffered in situ pH. In contrast, data from the experimental alteration of organic-rich Guaymas Basin sediment suggest that a calcite-plagioclase-quartz assemblage regulated in situ pH. Fluid speciation calculations suggest that in situ pH during Guaymas Basin sediment alteration was lower than during alteration of Middle Valley sediment and accounts for the substantially greater metal mobility at a given temperature and pressure during the former experiment. Comparison of our results with the results of basalt alteration experiments indicate that except for Cu, hydrothermal sediment alteration results in equal or greater concentrations of ore-forming metals at a given temperature and pressure. Accordingly, the presence of ore-forming metals in fluids currently venting from sediment-covered hydrothermal systems at concentrations substantially lower than in fluids from bare-rock systems may reflect chemical reequilibration during subsurface cooling within the sediment pile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ uplifted portions of oceanic crust at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were drilled during Expeditions 304 and 305 of the Integrated Ocean Drilling Program (IODP) and a 1.4 km section of predominantly gabbroic rocks with minor intercalated ultramafic rocks were recovered. Here we characterize variations in sulfur mineralogy and geochemistry of selected samples of serpentinized peridotites, olivine-rich troctolites and diverse gabbroic rocks recovered from Hole 1309D. These data are used to constrain alteration processes and redox conditions and are compared with the basement rocks of the southern wall of the Atlantis Massif, which hosts the Lost City Hydrothermal Field, 5 km to the south. The oceanic crust at the central dome is characterized by Ni-rich sulfides reflecting reducing conditions and limited seawater circulation. During uplift and exhumation, seawater interaction in gabbroic-dominated domains was limited, as indicated by homogeneous mantle-like sulfur contents and isotope compositions of gabbroic rocks and olivine-rich troctolites. Local variations from mantle compositions are related to magmatic variability or to interaction with seawater-derived fluids channeled along fault zones. The concomitant occurrence of mackinawite in olivine-rich troctolites and an anhydrite vein in a gabbro provide temperature constraints of 150-200 °C for late circulating fluids along local brittle faults below 700 m depth. In contrast, the ultramafic lithologies at the central dome represent domains with higher seawater fluxes and higher degrees of alteration and show distinct changes in sulfur geochemistry. The serpentinites in the upper part of the hole are characterized by high total sulfide contents, high d34Ssulfide values and low d34Ssulfate values, which reflect a multistage history primarily controlled by seawater-gabbro interaction and subsequent serpentinization. The basement rocks at the central dome record lower oxygen fugacities and more limited fluid fluxes compared with the serpentinites and gabbros of the Lost City hydrothermal system. Our studies are consistent with previous results and indicate that sulfur speciation and sulfur isotope compositions of altered oceanic mantle sequences commonly evolve over time. Heterogeneities in sulfur geochemistry reflect the fact that serpentinites are highly sensitive to local variations in fluid fluxes, temperature, oxygen and sulfur fugacities, and microbial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Leg 168 a transect was drilled across the eastern flank of the Juan de Fuca Ridge in an area where the volcanic basement is covered by sediments of variable thickness. Samples of basement volcanic rocks were recovered from nine locations along the transect, where the basement sediment interface is presently heated to temperatures varying from 15° to 64°C. Altered rocks with secondary calcium carbonate were common at four of the sites, where present-day temperatures range from 38° to 64°C. Fluid inclusions in aragonite suggest that the mineral precipitated from an aqueous fluid of seawater salinity at temperatures well below 100°C. The chemical compositions of secondary calcite and aragonite were determined with both an electron microprobe and a laser-ablation inductively coupled plasma-mass spectroscopy (LA-ICP-MS) microprobe. These two techniques yielded consistent analyses of the same minor elements (Mg and Sr) in the same specimens. The combined results show that secondary aragonites contain very little Mg, Mn, Fe, Co, Ni, Cu, Zn, Rb, La, Ce, Pb, or U, yet they contain significant Sr. In contrast, secondary calcites contain significant Mg, Mn, Fe, Ni, Cu, Zn, and Pb, yet very little Co, Rb, Sr, La, Ce, or U. Secondary calcium carbonates provide subseafloor reservoirs for some minor and trace elements. Replacement of aragonite by calcite should result in a release of Sr, Rb, and Zn to solution, and it provides a sink for Mg, Mn, Ni, Cu, Zn, and Pb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circulation of seawater through basaltic basement for several million years after crustal emplacement has been inferred from studies of surface heat flow, and may play a significant role in the exchange of elements between the oceanic crust and seawater. Without direct observation of the fluid chemistry, interpretations regarding the extent and timing of this exchange must be based on the integrated signal of alteration found in sampled basalts. Much interest has thus been expressed in obtaining and analyzing fluids directly from basaltic formations. It has been proposed that open oceanic boreholes can be used as oceanic groundwater wells to obtain fluids that are circulating within the formation. Water samples were collected from the open borehole in Hole 504B prior to drilling operations on Leg 137, with the original intention of collecting formation fluids from the surrounding basaltic rocks. Past results have yielded ambiguous conclusions as to the origin of the fluids recovered-specifically, whether or not the fluids were true formation fluids or merely the result of reaction of seawater in the borehole environment. The chemistry of eight borehole fluid samples collected during Leg 137 is discussed in this paper. Large changes in major, minor, and isotopic compositions relative to unaltered seawater were observed in the borehole fluids. Compositional changes increased with depth in the borehole. The samples exhibit the effect of simple mixing of seawater, throughout the borehole, with a single reacted fluid component. Analysis and interpretation of the results from Leg 137 in light of past results suggest that the chemical signals observed may originate predominantly from reaction with basaltic rubble residing at the bottom of the hole during the interim between drilling legs. Although this endeavor apparently did not recover formation waters, information on the nature of reaction between seawater and basalt at the prevalent temperatures in Hole 504B (>160°C) has been gained that can be related to reconstruction of the alteration history of the oceanic crust. Isotopic analyses allow calculation of element-specific water/rock mass ratios (Li and Sr) and are related to the extent of chemical exchange between the borehole fluids and basalt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of sediment diagenesis in the marine cycles of Li and B is poorly understood. Because Li and B are easily mobilized during burial and are consumed in authigenic clay mineral formation, their abundance in marine pore waters varies considerably. Exchange with the overlying ocean through diffusive fluxes should thus be common. Nevertheless, only a minor Li sink associated with the low-temperature alteration of volcanic ash has been observed. We describe a low-temperature diagenetic environment in the Black Sea dominated by the alteration of detrital plagioclase feldspars. Fluids expelled from the Odessa mud volcano in the Sorokin Trough originate from shallow (~100-400 m deep) sediments which are poor in volcanic materials but rich in anorthite. These fluids are depleted in Na+, K+, Li+, B, and 18O and enriched in Ca2+ and Sr2+, indicating that anorthite is dissolving and authigenic clays are forming. Using a simple chemical model, we calculate the pH and the partial pressure of CO2 (PCO2) in fluids associated with this alteration process. Our results show that the pH of these fluids is up to 1.5 pH units lower than in most deep marine sediments and that PCO2 levels are up to several hundred times higher than in the atmosphere. These conditions are similar to those which favor the weathering of silicate minerals in subaerial soil environments. We propose that in Black Sea sediments enhanced organic matter preservation favors CO2 production through methanogenesis and results in a low pore water pH, compared to most deep sea sediments. As a result, silicate mineral weathering, which is a sluggish process in most marine diagenetic environments, proceeds rapidly in Black Sea sediments. There is a potential for organic matter-rich continental shelf environments to host this type of diagenesis. Should such environments be widespread, this new Li and B sink could help balance the marine Li and Li isotope budgets but would imply an apparent imbalance in the B cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mytilus edulis were cultured for 3 months under six different seawater pCO2 levels ranging from 380 to 4000 µatm. Specimen were taken from Kiel Fjord (Western Baltic Sea, Germany) which is a habitat with high and variable seawater pCO2 and related shifts in carbonate system speciation (e.g., low pH and low CaCO3 saturation state). Hemolymph (HL) and extrapallial fluid (EPF) samples were analyzed for pH and total dissolved inorganic carbon (CT) to calculate pCO2 and [HCO3]. A second experiment was conducted for 2 months with three different pCO2 levels (380, 1400 and 4000 µatm). Boron isotopes (delta11B) were investigated by LA-MC-ICP-MS (Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry) in shell portions precipitated during experimental treatment time. Additionally, elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF of specimen from the second experiment were measured via ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Extracellular pH was not significantly different in HL and EPF but systematically lower than ambient water pH. This is due to high extracellular pCO2 values, a prerequisite for metabolic CO2 excretion. No accumulation of extracellular [HCO3] was measured. Elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF increased slightly with pH which is in accordance with increasing growth and calcification rates at higher seawater pH values. Boron isotope ratios were highly variable between different individuals but also within single shells. This corresponds to a high individual variability in fluid B/Ca ratios and may be due to high boron concentrations in the organic parts of the shell. The mean delta11B value shows no trend with pH but appears to represent internal pH (EPF) rather than ambient water pH.