155 resultados para Heather.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coccoliths, calcite plates produced by the marine phytoplankton coccolithophores, have previously shown a large array of carbon and oxygen stable isotope fractionations (termed "vital effects"), correlated to cell size and hypothesized to reflect the varying importance of active carbon acquisition strategies. Culture studies show a reduced range of vital effects between large and small coccolithophores under high CO2, consistent with previous observations of a smaller range of interspecific vital effects in Paleocene coccoliths. We present new fossil data examining coccolithophore vital effects over three key Cenozoic intervals reflecting changing climate and atmospheric partial pressure of CO2 (pCO2). Oxygen and carbon stable isotopes of size-separated coccolith fractions dominated by different species from well preserved Paleocene-Eocene thermal maximum (PETM, ~56 Ma) samples show reduced interspecific differences within the greenhouse boundary conditions of the PETM. Conversely, isotope data from the Plio-Pleistocene transition (PPT; 3.5-2 Ma) and the last glacial maximum (LGM; ~22 ka) show persistent vital effects of ~2 per mil. PPT and LGM data show a clear positive trend between coccolith (cell) size and isotopic enrichment in coccolith carbonate, as seen in laboratory cultures. On geological timescales, the degree of expression of vital effects in coccoliths appears to be insensitive topCO2 changes over the range ~350 ppm (Pliocene) to ~180 ppm (LGM). The modern array of coccolith vital effects arose after the PETM but before the late Pliocene and may reflect the operation of more diverse carbon acquisition strategies in coccolithophores in response to decreasing Cenozoic pCO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We constructed a precise early Eocene orbital cyclostratigraphy for DSDP Site 550 (Leg 80, Goban Spur, North Atlantic) utilizing precession related cycles as represented in a high resolution X-Ray Fluorescence based Barium core log. Based on counting of those cycles, we constrain the exact timing of two volcanic ash layers in Site 550 which correlate to ashes +19 and -17 of the Fur Formation in Denmark. The ashes, relative to the onset of the Paleocene/Eocene Thermal Maximum (PETM), are offset by 862 kyr and 672 kyr, respectively. When combined with published absolute ages for ash -17, the absolute age for the onset of the PETM is consistent with astronomically calibrated ages. Using the current absolute age of 28.02 Ma for the Fish Canyon Tuff (FCT) standard for calibrating the absolute age of ash -17 is consistent with tuning option 2 in the astronomically calibrated Paleocene time scale of Westerhold et al. (2008) [Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H.F., 2008, Astronomical calibration of the Paleocene time: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 257, p. 377-403]. Using the recently recalibrated absolute age of 28.201 Ma for the FCT standard is consistent with tuning option 3 in the astronomically calibrated Paleocene time scale. The new results do not support the existence of any additional 405-kyr cycle in the early Paleocene astronomically tuned time scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid carbon input into the ocean-atmosphere system caused a dramatic shoaling of the lysocline during the Paleocene-Eocene thermal maximum (PETM), a transient (~170 kyr) global warming event that occurred roughly 55 Ma. Carbon cycle models invoking an accelerated carbonate-silicate feedback mechanism to neutralize ocean acidification predict that the lysocline would subsequently deepen to depths below its original position as the marine carbonate system recovered from such a perturbation. To test this hypothesis, records of carbonate sedimentation and preservation for PETM sections in the Weddell Sea (ODP Site 690) and along the Walvis Ridge depth transect (ODP Sites 1262, 1263, and 1266) were assembled within the context of a unified chronostratigraphy. The meridional gradient of undersaturation delimited by these records shows that dissolution was more severe in the subtropical South Atlantic than in the Weddell Sea during the PETM, a spatiotemporal pattern inconsistent with the view that Atlantic overturning circulation underwent a transient reversal. Deepening of the lysocline following its initial ascent is signaled by increases in %CaCO3 and coarse-fraction content at all sites. Carbonate preservation during the recovery period is appreciably better than that seen prior to carbon input with carbonate sedimentation becoming remarkably uniform over a broad spectrum of geographic and bathymetric settings. These congruent patterns of carbonate sedimentation confirm that the lysocline was suppressed below the depth it occupied prior to carbon input, and are consistent with the view that an accelerated carbonate-silicate geochemical cycle played an important role in arresting PETM conditions.