311 resultados para Gravity inversion. Basement relief. Potiguar basin. Constrained inversion
Resumo:
The geochemical implications of thermally driven flow of seawater through oceanic crust on the mid-ocean ridge flank have been examined on a well-studied 80 km transect across the eastern flank of the Juan de Fuca Ridge at 48°N, using porewater and basement fluid samples obtained on ODP Leg 168. Fluid flow is recognised by near-basement reversals in porewater concentration gradients from altered values in the sediment section to seawater-like values in basaltic basement. In general, the basement fluids become more geochemically evolved with distance from the ridge and broadly follow basement temperature which ranges from not, vert, similar16° to 63°C. Although thermal effects of advective heat exchange are only seen within 20 km east of where basement is exposed near the ridge crest, chemical reactivity extends to all sites. Seawater passing through oceanic crust has reacted with basement rocks leading to increases in Ca2+ and decreases in alkalinity, Mg2+, Na+, K+, SO42- and delta18O. Sr isotope exchange between seawater and oceanic crust off axis is unequivocally demonstrated with endmember 87Sr/86Sr ~ 0.707. Evidence of more evolved fluids is seen at sites where rapid upwelling of fluids through sediments occurs. Chlorinities of the basement fluids are consistent with post-glacial seawater and thus a short residence time in the crust. Rates of lateral flow have been by estimated by modelling porewater sulphate gradients, using Cl as a glacial chronometer, and from radiocarbon dating of basal fluids. All three methods reveal fluid flow with 14C ages less than 10,000 yr and particle velocities of ~1-5 m/yr, in agreement with thermally constrained volumetric flow rates through a ~600 m thick permeable layer of ~10% porosity. Delta(element)/Delta(heat) extraction ratios are similar to values for ridge-crest hydrothermal systems.
Resumo:
Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar/39Ar ages determined in this study for two Leg 129 basalts average 114.6 +/- 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites (87Sr/86Sr init = 0.70360-0.70374; 143Nd/144Nd init = 0.512769-0.512790; 206Pb/204Pb meas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 +/- 1.0 Ma 40Ar/39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous basement in the Nauru and East Mariana Basins is Jurassic in age, the geochemical and chronological results discussed here suggest that the basement formed during a Cretaceous rifting event within the Jurassic crust. This magmatic and tectonic event was created by the widespread volcanism responsible for the genesis of the large oceanic plateaus of the western Pacific.
Resumo:
Tectonic structure and anomalous distributions of geophysical fields of the Sea of Okhotsk region are considered; the lack of reliable data on age of the lithosphere beneath basins of various origin in the Sea of Okhotsk is noted. Model calculations based on geological and geophysical data yielded 65 Ma (Cretaceous-Paleocene boundary) age for the Central Okhotsk rise underlain by the continental lithosphere. This estimate agrees with the age (the end of Cretaceous) derived from seismostratigraphic data. A comparative analysis of theoretical and measured heat flows in the Akademii Nauk Rise, underlain by the thinned continental crust, is performed. The analysis points to a higher (by 20%) value of the measured thermal background of the rise, which is consistent with high negative gradient of gravity anomalies in this area. Calculations yielded 36 Ma (Early Oligocene) age and lithosphere thickness of 50 km for the South Okhotsk depression, whose seafloor was formed by processes of back-arc spreading. The estimated age of the depression is supported by kinematic data on the region; the calculated thickness of the lithosphere coincides with the value estimated from data of magnetotelluric sounding here. This indicates that formation time (36 Ma) of the South Okhotsk depression was estimated correctly. Numerical modeling performed for determination of the basement age of rifting basins in the Sea of Okhotsk gave the following estimates: 18 Ma (Early Miocene) for the Deryugin Basin, 12 Ma (Middle Miocene) for the TINRO Basin, and 23 Ma (Late Oligocene) for the West Kamchatka Trough. These estimates agree with formation time (Oligocene-Quaternary) of the sedimentary cover in rifting basins of the Sea of Okhotsk derived from geological and geophysical data. Model temperature estimates are obtained for lithologic and stratigraphic boundaries of the sedimentary cover in the Deryugin and TINRO Basins and the West Kamchatka Trough; the temperature analysis indicates that the latter two structures are promising for oil and hydrocarbon gas generation; the West Kamchatka Trough possesses better reservoir properties compared to the TINRO and Deryugin Basins. The latter is promising for generation of hydrocarbon gas. Paleogeodynamic reconstructions of the Sea of Okhotsk region evolution are obtained for times of 90, 66, and 36 Ma on the base of kinematic, geomagnetic, structural, tectonic, geothermal, and other geological and geophysical data.
Resumo:
Mineral and chemical compositions of authigenic carbonates are studied by several methods in a sediment core collected in the axial zone of the Deryugin riftogenic basin. Manganese carbonates (kutnahorite, rhodochrosite) associated with manganiferous calcite, manganiferous pyrite, and nontronite are firstly identified in the Sea of Okhotsk. Manganese carbonates in Holocene diatomaceous ooze were presumably formed due to diagenetic transformation of sedimentary manganese hydroxides, organic matter, and biogenic silica, while those found in the underlying turbidites precipitated owing to the intermittent influx of endogenic fluids migrating along sand interbeds.
Resumo:
A cross-section of the Inn-valley has been surveyed by refraction- and refiection-seismic and gravimetrie methods. The thickness of the Inn-va.!ley sediments is 340- 390 m. At the northern edge of the valley an intermediate layer between sediments and basement has been detected, which is up to 300 ITl thick. This zone seems to mark the boundary of the northern calcareous alps.
Resumo:
Ferromanganese micro- and macronodules in eupelagic clays at Site AKO26-35 in the Southwest Pacific Basin were studied in order to check REE distribution during ferromanganese ore formation in non-productive zones of the Pacific Ocean. Host sediments and their labile fraction, ferromanganese micronodules (in size fractions 50-100, 100-250, 250-500, and >500 ?m) from eupelagic clays (horizons 37-10, 105-110, 165-175, and 189-190 cm), and buried ferromanganese micronodules (horizons 64-68, 158-159, and 165-166 cm) were under study. Based on partition analysis data anomalous REE enrichment in eupelagic clays from Site AKO26-35 is related to accumulation of rare earth elements in iron hydroxophosphates. Concentration of Ce generally bound with manganese oxyhydroxides is governed by oxidation of Mn and Ce in ocean surface waters. Micronodules (with Mn/Fe from 0.7 to 1.6) inherit compositional features of the labile fraction of bottom sediments. Concentrations of Ce, Co, and Th depend on micronodule sizes. Enrichment of micronodules in hydrogenic or hydrothermal matter is governed by their sizes and by a dominant source of suspended oxyhydroxide material. The study of buried ferromanganese micronodules revealed general regularities in compositional evolution of oxyhydroxide matrices of ferromanganese micro- and macronodules. Compositional variation of micro- and macronodules relative to the labile fraction of sediments in the Pacific non-productive zone dramatically differs from the pattern in bioproductive zones where micronodule compositions in coarser fractions are similar to those in associated macronodules and labile fractions of host sediments due to more intense suboxidative diagenesis.
Resumo:
Three sites were drilled in the Izu-Bonin forearc basin during Ocean Drilling Program (ODP) Leg 126. High-quality formation microscanner (FMS) data from two of the sites provide images of part of a thick, volcaniclastic, middle to upper Oligocene, basin-plain turbidite succession. The FMS images were used to construct bed-by-bed sedimentary sections for the depth intervals 2232-2441 m below rig floor (mbrf) in Hole 792E, and 4023-4330 mbrf in Hole 793B. Beds vary in thickness from those that are near or below the resolution of the FMS tool (2.5 cm) to those that are 10-15 m thick. The bed thicknesses are distributed according to a power law with an exponent of about 1.0. There are no obvious upward thickening or thinning sequences in the bed-by-bed sections. Spaced packets of thick and very thick beds may be a response to (1) low stands of global sea level, particularly at 30 Ma, (2) periods of increased tectonic uplift, or (3) periods of more intense volcanism. Graded sandstones, most pebbly sandstones, and graded to graded-stratified conglomerates were deposited by turbidity currents. The very thick, mainly structureless beds of sandstone, pebbly sandstone, and pebble conglomerate are interpreted as sandy debris-flow deposits. Many of the sediment gravity flows may have been triggered by earthquakes. Long recurrence intervals of 0.3-1 m.y. for the very thickest beds are consistent with triggering by large-magnitude earthquakes (M = 9) with epicenters approximately 10-50 km away from large, unstable accumulations of volcaniclastic sand and ash on the flanks of arc volcanoes. Paleocurrents were obtained from the grain fabric of six thicker sandstone beds, and ripple migration directions in about 40 thinner beds; orientations were constrained by the FMS images. The data from ripples are very scattered and cannot be used to specify source positions. They do, however, indicate that the paleoenvironment was a basin plain where weaker currents were free to follow a broad range of flow paths. The data from sandstone fabric are more reliable and indicate that turbidity currents flowed toward 150? during the time period from 28.9 to 27.3 Ma. This direction is essentially along the axis of the forearc basin, from north to south, with a small component of flow away from the western margin of the basin.
Resumo:
Ice shelves strongly impact coastal Antarctic sea-ice and the associated ecosystem through the formation of a sub-sea-ice platelet layer. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In this study, we applied a laterally-constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the landfast sea ice of Atka Bay, eastern Weddell Sea, in 2012. In addition to consistent fast-ice thickness and -conductivities along > 100 km transects; we present the first comprehensive, high resolution platelet-layer thickness and -conductivity dataset recorded on Antarctic sea ice. The reliability of the algorithm was confirmed by using synthetic data, and the inverted platelet-layer thicknesses agreed within the data uncertainty to drill-hole measurements. Ice-volume fractions were calculated from platelet-layer conductivities, revealing that an older and thicker platelet layer is denser and more compacted than a loosely attached, young platelet layer. The overall platelet-layer volume below Atka Bay fast ice suggests that the contribution of ocean/ice-shelf interaction to sea-ice volume in this region is even higher than previously thought. This study also implies that multi-frequency EM induction sounding is an effective approach in determining platelet layer volume on a larger scale than previously feasible. When applied to airborne multi-frequency EM, this method could provide a step towards an Antarctic-wide quantification of ocean/ice-shelf interaction.
Resumo:
A study of petrographic and mineral compositions of 26 sediment cores from the western part of the Central Basin of the Indian Ocean has identified biogenic, terrigenous, volcanogenic, and authigenic sediment types formed in certain facies conditions. On the basis of bio- and paleomagnetic stratigraphy data from the cores sedimentation rates of different sediment types have been calculated. Modern and Pliocene-Pleistocene positions of the main facies boundaries (the critical depth of carbonate accumulation, the geochemical boundary between hemi- and miopelagic zones, the frontal boundaries of the equatorial belt of biogenic silica accumulation) have been determined. It has been shown that the sedimentary process during Pliocene-Quaternary had cycle variations characterized by successive changes of different sedimentation types - hemipelagic, miopelagic, and biogenic.