488 resultados para GPS tracking data
Resumo:
As part of the CryoSat Cal/Val activities and the pre-site survey for an ice core drilling contributing to the International Partnerships in Ice Core Sciences (IPICS), ground based kinematic GPS measurements were conducted in early 2007 in the vicinity of the German overwintering station Neumayer (8.25° W and 70.65° S). The investigated area comprises the regions of the ice tongues Halvfarryggen and Søråsen, which rise from the Ekströmisen to a maximum of about 760 m surface elevation, and have an areal extent of about 100 km x 50 km each. Available digital elevation models (DEMs) from radar altimetry and the Antarctic Digital Database show elevation differences of up to hundreds of meters in this region, which necessitated an accurate survey of the conditions on-site. An improved DEM of the Ekströmisen surroundings is derived by a combination of highly accurate ground based GPS measurements, satellite derived laser altimetry data (ICESat), airborne radar altimetry (ARA), and radio echo sounding (RES). The DEM presented here achieves a vertical accuracy of about 1.3 m and can be used for improved ice dynamic modeling and mass balance studies.
Resumo:
The distribution of seagrass and associated benthic communities on the reef and lagoon of Low Isles, Great Barrier Reef, was mapped between the 29 July and 29 August 1997. For this survey, observers walked or free-dived at survey points positioned approximately 50 m apart along a series of transects. Visual estimates of above-ground seagrass biomass and % cover of each benthos and substrate type were recorded at each survey point. A differential handheld global positioning system (GPS) was used to locate each survey point (accuracy ±3m). A total of 349 benthic survey points were examined. To assist with mapping meadow/habitat type boundaries, an additional 177 field points were assessed and a georeferenced 1:12,000 aerial photograph (26th August 1997) was used as a secondary source of information. Bathymetric data (elevation below Mean Sea Level) measured at each point assessed and from Ellison (1997) supplemented information used to determine boundaries, particularly in the subtidal lagoon. 127.8 ±29.6 hectares was mapped. Seagrass and associated benthic community data was derived by haphazardly placing 3 quadrats (0.25m**2) at each survey point. Seagrass above ground biomass (standing crop, grams dry weight (g DW m**-2)) was determined within each quadrat using a non-destructive visual estimates of biomass technique and the seagrass species present identified. In addition, the cover of all benthos was measured within each of the 3 quadrats using a systematic 5 point method. For each quadrat, frequency of occurrence for each benthic category was converted to a percentage of the total number of points (5 per quadrat). Data are presented as the average of the 3 quadrats at each point. Polygons of discrete seagrass meadow/habitat type boundaries were created using the on-screen digitising functions of ArcGIS (ESRI Inc.), differentiated on the basis of colour, texture, and the geomorphic and geographical context. The resulting seagrass and benthic cover data of each survey point and for each seagrass meadow/habitat type was linked to GPS coordinates, saved as an ArcMap point and polygon shapefile, respectively, and projected to Universal Transverse Mercator WGS84 Zone 55 South.