176 resultados para Fractional Precipitation
Resumo:
Chemical and isotopic data for rare massive and semimassive sulfide samples cored at Site 1189 (Roman Ruins, PACMANUS) suggest their genetic relationship with sulfide chimneys at the seafloor. Sand collected from the hammer drill after commencement of Hole 1189B indicates that at least the lower section of the cased interval was occupied by material similar to the stockwork zone cored from 31 to ~100 meters below seafloor (mbsf) in this hole, but with increased content of barite, sphalerite, and lead-bearing minerals. Fractional crystallization of ascending hydrothermal fluid involving early precipitation of pyrite may explain vertical mineralogical and chemical zoning within the stockwork conduit and the high base and precious metal contents of Roman Ruins chimneys. A mineralized volcaniclastic unit cored deep in Hole 1189A possibly represents the lateral fringe of the conduit system. Lead isotope ratios in the sulfides differ slightly but significantly from those of fresh lavas from Pual Ridge, implying that at least some of the Pb within the Roman Ruins hydrothermal system derived from a deeper, more radiogenic source than the enclosing altered volcanic rocks.
Resumo:
The aim of this paper is to find out if there is a significant difference in using NDVI dataset processed by harmonic analysis method to evaluate its dynamic and response to climate change, compared with the original data.
Resumo:
Data compiled within the IMPENSO project. The Impact of ENSO on Sustainable Water Management and the Decision-Making Community at a Rainforest Margin in Indonesia (IMPENSO), http://www.gwdg.de/~impenso, was a German-Indonesian research project (2003-2007) that has studied the impact of ENSO (El Nino-Southern Oscillation) on the water resources and the agricultural production in the PALU RIVER watershed in Central Sulawesi. ENSO is a climate variability that causes serious droughts in Indonesia and other countries of South-East Asia. The last ENSO event occurred in 1997. As in other regions, many farmers in Central Sulawesi suffered from reduced crop yields and lost their livestock. A better prediction of ENSO and the development of coping strategies would help local communities mitigate the impact of ENSO on rural livelihoods and food security. The IMPENSO project deals with the impact of the climate variability ENSO (El Niño Southern Oscillation) on water resource management and the local communities in the Palu River watershed of Central Sulawesi, Indonesia. The project consists of three interrelated sub-projects, which study the local and regional manifestation of ENSO using the Regional Climate Models REMO and GESIMA (Sub-project A), quantify the impact of ENSO on the availability of water for agriculture and other uses, using the distributed hydrological model WaSiM-ETH (Sub-project B), and analyze the socio-economic impact and the policy implications of ENSO on the basis of a production function analysis, a household vulnerability analysis, and a linear programming model (Sub-project C). The models used in the three sub-projects will be integrated to simulate joint scenarios that are defined in collaboration with local stakeholders and are relevant for the design of coping strategies.