534 resultados para Drilling Mud Invasion
Resumo:
Paleobathymetric assessments of fossil foraminiferal faunas play a significant role in the analysis of the paleogeographic, sedimentary, and tectonic histories of New Zealand's Neogene marine sedimentary basins. At depths >100 m, these assessments often have large uncertainties. This study, aimed at improving the precision of paleodepth assessments, documents the present-day distribution of deep-sea foraminifera (>63 µm) in 66 samples of seafloor sediment at 90-700 m water depth (outer shelf to mid-abyssal), east of New Zealand. One hundred and thirty-nine of the 465 recorded species of benthic foraminifera are new records for the New Zealand region. Characters of the foraminiferal faunas which appear to provide the most useful information for estimating paleobathymetry are, in decreasing order of reliability: relative abundance of common benthic species; benthic species associations; upper depth limits of key benthic species; and relative abundance of planktic foraminifera. R mode cluster analysis on the quantitative census data of the 58 most abundant species of benthic foraminifera produced six species associations within three higher level clusters: (1) calcareous species most abundant at mid-bathyal to outer shelf depths (<1000 m); (2) calcareous species most abundant at mid-bathyal and greater depths (>600 m); (3) agglutinated species mostly occurring at deep abyssal depths (>3000 m). A detrended correspondence analysis ordination plot exhibits a strong relationship between these species associations and bathymetry. This is manifest in the bathymetric ranges of the relative abundance peaks of many of the common benthic species (e.g., Abditodentrix pseudothalmanni 500-2800 m, Bolivina robusta 200-650 m, Bulimina marginata f. marginata 20-600 m, B. marginata f. aculeata 400-3000 m, Cassidulina norvangi 1000-4500 m, Epistominella exigua 1000-4700 m, and Trifarina angulosa 10-650 m), which should prove useful in paleobathymetric estimates. The upper depth limits of 28 benthic foraminiferal species (e.g., Fursenkoina complanata 200 m, Bulimina truncana 450 m, Melonis affinis 550 m, Eggerella bradyi 750 m, and Cassidulina norvangi 1000 m) have potential to improve the precision of paleobathymetric estimates based initially on the total faunal composition. The planktic percentage of foraminiferal tests increases from outer shelf to upper abyssal depths followed by a rapid decline within the foraminiferal lysocline (below c. 3600 m). A planktic percentage <50% is suggestive of shelf depths, and >50% is suggestive of bathyal or abyssal depths above the CCD. In the abyssal zone there is dramatic taphonomic loss of most agglutinated tests (except some textulariids) at burial depths of 0.1-0.2 m, which negates the potential usefulness of these taxa in paleobathymetric assessments.
Resumo:
Abyssal mud waves (or fine-grained sediment waves) are often cited as evidence for deep current activity because subbottom profiles show that the wave form has migrated with time. The migration history of a fine-grained sediment wave on the Blake-Bahama Outer Ridge (ODP Site 1062) has been studied through the analysis of multiple ODP holes spaced across the wave. Additional information about wave migration patterns comes from 3.5-kHz records and watergun seismic profiles. These data suggest that wave migration has varied during the last not, vert, similar ~10 Myr, although the only sediments sampled are younger than 4.8 Ma. Seismic profiles suggest wave migration was initiated about 8-10 Ma, and wave migration was pronounced from about 5 Ma to about 1 Ma (with an episode of wave reorganization about 4.5 Ma). Analysis of ODP cores suggests that migration rates have been somewhat lower and more variable during the last 1 Myr. Intervals of no wave migration are observed for several time intervals and appear to characterize deglaciations, especially during the last 500 kyr. Comparisons between seismic profiles and the core record show that most of the seismic horizons correlate closely with time horizons, and thus that the seismic profiles give a reasonable representation of sediment wave migration. Models suggest that wave migration is more pronounced during periods of higher bottom current flow and less pronounced during periods of lower current flow. Thus the migration record is consistent with generally higher bottom flow speeds at this site prior to 1 Ma and lower bottom flow speeds after 1 Ma. The Mid-Pleistocene Transition from a dominant climatic periodicity of 40 kyr to a dominant climatic periodicity of 100 kyr starts at about this time, suggesting an overall reduction in bottom flow speed at this site coincident with changing climate patterns. These changes in flow speed could be related to changes in the depth of the Western Boundary Undercurrent as well as to changes in the speed of thermohaline circulation.
Resumo:
The Owen Ridge south of Oman represents oceanic crust that was uplifted by compressional tectonic forces in the early Miocene. Build-out of the Indus Fan led to deposition of a thick sequence of turbidites over the site of the Ridge during the late Oligocene and early Miocene. Early Miocene uplift of the Ridge led to a pelagic cap of nannofossil chalks. Two short sequences of turbidites from the pre- and syn-uplift phases were chosen for detailed grain size analysis. The upper Oligocene section at Site 731 is composed of thin (centimeter-decimeter scale) graded mud turbidites separated by relatively thick (decimeter-meter scale) intervals of homogeneous, non-bioturbated clayey siltstones. These finer intervals are unusually silt-rich (about 60%) for ungraded material and were probably deposited as undifferentiated muds from a series of turbidity current tails. By contrast, the lower Miocene section at Site 722 is comprised of a sequence of interbedded turbidites and hemipelagic carbonates. Sharp-based silt turbidites are overlain by burrow-mottled marly nannofossil chalks. The Oligocene sequence may have accumulated in an overbank setting on the middle fan - the local topographic position favoring frequent deposition from turbidity current tails and occasional deposition from the body of a turbidity flow. Uplift of the Ridge in the early Miocene led to pelagic carbonate deposition interrupted only by turbidity currents capable of overcoming a topographic barrier. Further uplift eventually led to entirely pelagic carbonate deposition.
Resumo:
On the Cape Verde Plateau, Neogene deposits are composed of major pelagic and hemipelagic sediments. These sediments show climatic sequences composed of two lithologic terms that differ in their siliciclastic and carbonate contents. Several turbiditic and contouritic sequences are interbedded in these deposits. Turbidite sequences are fine grained and thin bedded with a very low frequency (about 12 sequences during the Neogene). They are composed of quartz-rich siliciclastic or volcaniclastic sediments. Quartz-rich turbidites originated from the Senegalese margin. Their slightly higher frequency during the early Pliocene indicates that the stronger turbidity currents, and probably the most abundant continental inputs, occur at that period. Volcaniclastic turbidites are only present in the early Miocene (about 17 Ma) and the early Pleistocene (1 Ma). They have flown from adjacent Cape Verde Islands and reflect two episodes of high volcanic activity in this area. Contourite sequences, composed of biogenic sandy silts, represent less than 5% of the sediment pile and seem to have been mainly deposited during the late Pleistocene. These different sequences show clay mineral variations throughout Neogene time. Kaolinite is predominant in the Miocene and lower Pliocene deposits; this mineral decreases thereafter, with an increased trend of illite in the uppermost Pliocene and Pleistocene sediments, suggesting a change in sediment sources on the Saharan continent at about 2.6 Ma.
Resumo:
Several studies indicate that the 2011 Tohoku-Oki earthquake (Mw 9.0) off the Pacific coast of Japan has induced slip to the trench and triggered landslides in the Japan Trench. In order to better understand these processes, detailed mapping and shallow-coring landslides at the trench as well as Integrated Ocean Drilling Program (IODP) deep drilling to recover the plate boundary décollement (Japan Trench Fast Earthquake Drilling Project, JFAST) have been conducted. In this study we report sediment core data from the rapid response R/V SONNE cruise (SO219A) to the Japan Trench, evidencing a Mass Transport Deposit (MTD) in the uppermost section later drilled at this JFAST-site during IODP Expedition 343. A 8.7 m long gravity core (GeoB16423-1) recovered from ~7,000 m water depth reveals a 8 m sequence of semi-consolidated mud clast breccias embedded in a distorted chaotic sediment matrix. The MTD is covered by a thin veneer of 50 cm hemipelagic, bioturbated diatomaceous mud. This stratigraphic boundary can be clearly distinguished by using physical properties data from Multi Sensor Core Logging and from fall-cone penetrometer shear strength measurements. The geochemical analysis of the pore-water shows undisturbed linear profiles measured from the seafloor downcore across the stratigraphic contact between overlying younger background-sediment and MTD below. This indicates that the investigated section has not been affected by a recent sediment destabilization in the course of the giant Tohoku-Oki earthquake event. Instead, we report an older landslide which occurred between 700 and 10,000 years ago, implying that submarine mass movements are dominant processes along the Japan Trench. However, they occur on local sites and not during each megathrust earthquake.
Resumo:
A moderate-resolution isotope stratigraphy (with an average of one sample per 17,500 yr.) derived from the benthic foraminifer Uvigerina (or Cibicides), the planktonic foraminifer Globigerina bulloides, and calcareous nannofossil concentrates is presented for the entire Quaternary (and latest Pliocene) section of mid-upper bathyal calcareous oozes from DSDP Site 593, western Challenger Plateau, south Tasman Sea. Superimposed on a trend of gradually increasing average delta18O values through the Pleistocene, reflecting the progressive buildup of polar ice sheets, is a record of highfrequency but generally low amplitude (0.5-1?) isotope fluctuations in the early Quaternary (1.9-1.0 m.y.), followed by a greatly increased intensity (1.5-2.0 ?) of glacial-interglacial fluctuations during the late Quaternary (< 1.0 m.y.). The standard late Quaternary isotope stages 1 to 24 are mainly resolvable. Significant excursions in both delta18O and delta13C values at various times during the Quaternary are suggested to be due to periodic, fundamental changes in ocean circulation properties over the plateau. For example, intensified upwelling of Antarctic Intermediate Waters during several glacial periods is indicated by the convergence of benthic and planktonic foraminiferal delta18O data, and productivity variations may account for certain delta13C spikes in the record. With increasingly higher resolution analysis this core will provide a useful Quaternary isotope reference section for southern temperate waters in the southwest Pacific, centered on New Zealand.
Resumo:
In 1979 a core drilling project was carried out on Vernagtferner in the Oetztal Alps (Austria). This report describes the field work of the drilling project, the recovered core material and the occurrence of water in the boreholes and compiles the succeding investigation program.
Resumo:
Several amino acid diagenetic reactions, which take place in the deep-sea sedimentary environment, were investigated, using various Deep Sea Drilling Project (DSDP) cores. Initially it was found that essentially all the amino acids in sediments are bound in peptide linkages; but, with increasing age, the peptide bonds undergo slow hydrolysis that results in an increasingly larger fraction of amino acids in the free state. The hydrolysis half-life in calcareous sediments was estimated to be ~1-2 million years, while in non-carbonate sediment the hydrolysis rate may be considerably slower. The amino acid compositions and the extent of racemization of several amino acids were determined in various fractions isolated from the sediments. These analyses demonstrated that the mechanism, kinetics, and rate of amino acid diagenesis are highly dependent upon the physical state (i.e., free, bound, etc.) in which the amino acids exist in the sedimentary environment. In the free state, serine and threonine were found to decompose primarily by a dehydration reaction, while in the bound state (residue or HCl-insoluble fraction) a reversible aldol-cleavage reaction is the main decomposition pathway of these amino acids. The change in amino acid composition of the residue fraction with time was suggested to be due to the hydrolysis of peptide bonds, while in foraminiferal tests the compositional changes over geological time are the result of various decomposition reactions. Reversible first-order racemization kinetics are not observed for free amino acids in sediments. The explanation for these anomalous kinetics involves a complex reaction series which includes the hydrolysis of peptide bonds and the very rapid racemization of free amino acids. The racemization rates of free amino acids in sediments were found to be many orders of magnitude faster than those predicted from elevated temperature experiments using free amino acids in aqueous solution. The racemization rate enhancement of free amino acids in sediments may be due to the catalysis of the reaction by trace metals. Reversible first-order kinetics are followed for amino acids in the residue fraction isolated from sediments; the rate of racemization in this fraction is slower than that predicted for protein-bound amino acids. Various applications of amino acid diagenetic reactions are discussed. Racemization and the decomposition reaction of serine and threonine can both be used, with certain limitations, to make rough age estimates of deep-sea sediments back to several million years. The extent of racemization in foraminiferal tests which have been dated by some other independent technique can be used to estimate geothermal gradients, and thus heat flows, and to evaluate the bottom water temperature history in certain oceanic areas.
Resumo:
Miocene deep-sea sediments from ODP Site 744 (Kerguelen Plateau, southern Indian Ocean) contain abundant and diverse planktonic foraminiferal assemblages. Their analysis led to the identification of the interval between 17.0 and 14.2 Ma as a time of mid-Miocene warmth, which is investigated here in detail. This investigation includes reconstruction of trends in foraminiferal faunal composition and diversity through time, as well as in morphology and coiling direction within Globorotalia praescitula and Globorotalia zealandica plexi. These two large-globorotaliid plexi constitute the most characteristic component of the mid-Miocene foraminiferal faunas at ODP Site 744. Selected benthic (Cibicidoides sp.) and planktonic foraminifera were also analyzed for delta18O and delta13C ratios. Distinctive planktonic assemblages were the basis for identification of three foraminiferal biofacies between 17.0 and 14.2 Ma. The most prominent faunal changes took place between Biofacies 2 and 3 (15.5-15.0 Ma). Six of 11 macroperforate planktonic foraminifera from the >150-µm size fraction occur principally within Biofacies 3. Three other taxa are present throughout the interval analyzed. Moreover, both aforementioned globorotaliid plexi exhibit an increase in morphological diversity between Biofacies 2 and 3. Within the same interval, the G. zealandica plexus shows a switch from random coiling (50% sinistral) to clearly sinistral-dominated coiling. The faunal changes recognized are interpreted as the result of foraminiferal immigrations (increase in faunal diversity) and evolutionary trends (increase in morphological variability and change in coiling mode among the globorotaliid plexi). The stable isotopic results allow paleoenvironmental interpretation of these faunal changes. According to the delta18O values, no significant change in sea-surface temperature occurred between 17.0 and 14.2 Ma. However, the same data suggest an increase in ecological distance between various niches, which is expressed by a rising delta18O gradient recorded between various planktonic taxa upward within the section. This trend suggests niche-space availability as a likely factor responsible for the faunal changes recognized. Changes in the shape and depth of the thermocline, as well as in seasonality and eutrophication are considered as possible causes. Among these an increase in seasonality appears to have been responsible for the increase in species and morphological diversities between 15.5 and 15.0 Ma. The proposed scenario suggests that changes in seasonality may be an important factor driving faunal migrations and evolution. Variable seasonality may also affect the oxygen isotopic record of planktonic foraminiferal taxa.
Resumo:
The development of an orbitally tuned time scale for the ODP leg 138 sites provides biostratigraphers a very high resolution chronostratigraphic framework. With this framework we are better able to define which of the first and last appearances of species appear to be synchronous. In addition, the geographic distribution of sites provides the means with which the detailed spatial patterns of invasion of new species and the extinction of older species can be mapped. These maps not only provide information on the process of evolution, migration, and extinction, they can also be related to water mass distributions and near-surface circulation of the ocean. Of 39 radiolarian events studied at 11 sites in the eastern equatorial Pacific, 28 were found to have a minimum range in their estimated age that exceeded 0.15 m.y. The temporal pattern of first and last appearances of these diachronous events have coherent spatial patterns that indicate shifts in the areas of high oceanographic gradients over the past 10 Ma. These changes in the locations of high gradient regions suggest that the South Equatorial Current (SEC) was north of its present position prior to approximately 7 Ma. There was a southward shift in the northern boundary of this current between approximately 6 and 7 Ma, and the development of a relatively strong gradient between the northeastern and northwestern sites. Between approximately 3.7 and 3.4 Ma, there was a very slight northward shift in the northern boundary of the SEC and the steep gradients between the northeastern and northwestern sites may have disappeared. This change is thought to be associated with the closing of the Isthmus of Panama. The temporal-spatial patterns of diachronous events younger than 3.4 Ma are consistent with patterns of circulation in the modern ocean.
Resumo:
Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at subsurface depths of about 2 to 20 meters; Mn-oxide material is limited to the upper 2 meters of the mounds. The nontronite forms intervals of up to a few meters' thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major element composition between nontronites from varying locations within the mounds, with adjacent granules from a given sample having very similar compositions; (2) individual granules show little internal variation in composition. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of Eh and composition during nontronite formation. Mn-oxide crusts have very low Fe contents, a feature characteristic of rapidly deposited Mn-oxide crusts formed under hydrothermal influences. The rare-earth element (REE) abundances of the nontronites are generally extremely low, totalling less than several ppm. Two samples have the negatively Ce anomaly typical of authigenic precipitates formed relatively rapidly from seawater. A Mn-oxide crust sample has low REE contents, typical of Mn-oxide crusts formed under hydrothermal influences, but no negative Ce anomaly. A sample of unusual Mn-Fe-oxide mud has relatively high REE concentrations and a seawater-type pattern; both of these features are also found for metalliferous sediments from the East Pacific Rise. The oxygen and hydrogen isotopic composition of the nontronites define a restricted field within a d18O-dD plot. In manganiferous sediments, d18O and dD appear to decrease with increase in the Mn-oxide content of the sediment. From the d18O values of the nontronites, formation temperatures in the range of about 20-30°C have been estimated. By comparison, temperatures of up to 11.5 °C at a 9-meter depth have been directly measured within the mounds (Corliss et al., 1979), and heat-flow data suggest present basement/sediment interface temperatures of 15-25°C. In a plot of Fe + Mn vs. d18O, the Mn-oxide crust and Mn-Fe-ooze plot near the tie-lines for authigenic Mn nodules and silicate phases, implying that they have formed in isotopic equilibrium with seawater at or close to bottom-water temperatures.
Resumo:
The Bounty Trough, east of New Zealand, lies along the southeastern edge of the present-day Subtropical Front (STF), and is a major conduit via the Bounty Channel, for terrigenous sediment supply from the uplifted Southern Alps to the abyssal Bounty Fan. Census data on 65 benthic foraminiferal faunas (>63 µm) from upper bathyal (ODP 1119), lower bathyal (DSDP 594) and abyssal (ODP 1122) sequences, test and refine existing models for the paleoceanographic and sedimentary history of the trough through the last 150 ka (marine isotope stages, MIS 6-1). Cluster analysis allows recognition of six species groups, whose distribution patterns coincide with bathymetry, the climate cycles and displaced turbidite beds. Detrended canonical correspondence analysis and comparisons with modern faunal patterns suggest that the groups are most strongly influenced by food supply (organic carbon flux), and to a lesser extent by bottom water oxygen and factors relating to sediment type. Major faunal changes at upper bathyal depths (1119) probably resulted from cycles of counter-intuitive seaward-landward migrations of the Southland Front (SF) (north-south sector of the STF). Benthic foraminiferal changes suggest that lower nutrient, cool Subantarctic Surface Water (SAW) was overhead in warm intervals, and higher nutrient-bearing, warm neritic Subtropical Surface Water (STW) was overhead in cold intervals. At lower bathyal depths (594), foraminiferal changes indicate increased glacial productivity and lowered bottom oxygen, attributed to increased upwelling and inflow of cold, nutrient-rich, Antarctic Intermediate Water (AAIW) and shallowing of the oxygen-minimum zone (upper Circum Polar Deep Water, CPDW). The observed cyclical benthic foraminiferal changes are not a result of associations migrating up and down the slope, as glacial faunas (dominated by Globocassidulina canalisuturata and Eilohedra levicula at upper and lower bathyal depths, respectively) are markedly different from those currently living in the Bounty Trough. On the abyssal Bounty Fan (1122), faunal changes correlate most strongly with grain size, and are attributed to varying amounts of mixing of displaced and in-situ faunas. Most of the displaced foraminifera in turbiditic sand beds are sourced from mid-outer shelf depths at the head of the Bounty Channel. Turbidity currents were more prevalent during, but not restricted to, glacial intervals.
Resumo:
Sites 815 and 817 were drilled near the Townsville Trough during Leg 133 of the Ocean Drilling Program. The physical properties, compressional-wave velocity, and consolidation characteristics indicate that the periplatform carbonate sediments maintain more water content and lower compressional velocity near the Queensland Plateau than the clayey hemipelagic sediments, which have a clay content of up to 60%. Bulk density, void ratio or porosity, water content, and compressional-wave velocity are shown to have a linear relationship with burial depth. Between 3.5 and 5 Ma (about 100-500 mbsf), these physical properties maintained a constant rate vs. the depth in core because of the fast sedimentation-rate effect at Site 815. However, compressionalwave velocity still increases downward in this section. The clay content in this section causes an increase of bulk modulus and compaction effect. At Site 817, scarce terrigenous mud content and abundant carbonate content (88%-97%) cause a straight line relationship between physical properties and burial depth. During the consolidation test, we show that dominant micritic particles may cause faster acoustic velocity than sediments composed mainly of coccoliths. The bulk modulus ratio increasing rate in the clay-rich carbonate sediments is almost 4.5 times higher than in the clay-free periplatform carbonate sediments.
Resumo:
Subduction of the Pacific plate beneath the Mariana forearc releases fluids to the overlying mantle wedge that ascend, producing serpentinite "mud" that discharges on the ocean floor. As part of Leg 195 of the Ocean Drilling Program cores were obtained from drill-holes into the mud volcanoes. We report the isotopic composition of Sr in water squeezed from intervals of the cores, in the serpentinite mud, in leaches of the serpentinite mud, and in entrained small harzburgitic clasts. Except in the upper few meters below the seawater-mud interface, where pore water approaches seawater Sr concentration and isotopic ratio, Sr concentration and isotopic composition remain constant at 3-6 µmol/kg and ~0.7054. Because the elemental chemistry of the pore water is unlike seawater, this isotopic composition reflects fluids derived from the subducted slab, probably modified by reaction with mantle material during ascent. Higher Sr isotopic ratios, up to 0.7087, - but not with higher Sr concentrations in pore water - occur superimposed on an advection profile at 13-16 mbsf surrounding a thin layer of foraminiferal sand. Since the upward seepage velocity of slab fluids in the mud volcano vents is a few cm/yr, exchange of Sr between these carbonates and the rising fluids must have occurred within a maximum of a few hundred years, essentially instantaneously given the millions, or tens of millions, of years the mud volcanoes have been in existence. In contrast, the strontium isotopic compositions of leached serpentinite mud, and of small harzburgite clasts entrained in the mud, are always significantly greater than that of the pore water. In small harzburgite clasts the ratio reaches 0.7088, almost as high as the seawater value of 0.7092 and much higher than the value of typical mantle-derived strontium of ~0.704. The serpentinite muds and harzburgite clasts clearly equilibrated with seawater Sr when they were initially deposited at the surface of the seamount, but following burial they have not fully equilibrated with strontium in the pore water now discharging through the vents. These variations in the strontium isotopic composition of solids and pore waters are more consistent with episodic expulsion of fluids in the subduction zone than steady state flow. Whereas strontium in carbonates equilibrates isotopically within a few hundred years, strontium in buried harzburgite clasts does not equilibrate in the same time, assuming steady state rates of upward fluid flow. By inference, the harzburgite clasts and associated serpentinite mud must have been near the seafloor, unburied, for a yet undetermined but much longer period of time to have equilibrated from ~0.704 to 0.709 prior to subsequent burial. It may be possible to characterize at least the periodicity of fluid release in the mud volcano setting by investigating the zonation of strontium isotopic composition of hartzburgite clasts throughout the 60-meter deep composite cores.