194 resultados para Cuypers, Guillaume


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different proxies for sea surface temperature (SST) often exhibit divergent trends for deglacial warming in tropical regions, hampering our understanding of the phase relationship between tropical SSTs and continental ice volume at glacial terminations. To reconcile divergent SST trends, we report reconstructions of two commonly used paleothermometers (the foraminifera G. ruber Mg/Ca and the alkenone unsaturation index) from a marine sediment core collected in the southwestern tropical Indian Ocean encompassing the last 37,000 years. Our results show that SSTs derived from the alkenone unsaturation index (UK'37) are consistently warmer than those derived from Mg/Ca by ~2-3°C except for the Heinrich Event 1. In addition, the initial timing for the deglacial warming of alkenone SST started at ~15.6 ka, which lags behind that of Mg/Ca temperatures by 2.5 kyr. We argue that the discrepancy between the two SST proxies reflects seasonal differences between summer and winter rather than post-depositional processes or sedimentary biases. The UK'37 SST record clearly mimics the deglacial SST trend recorded in the North Atlantic region for the earlier part of the termination, indicating the early deglacial warming trend attributed to local summer temperatures was likely mediated by changes in the Atlantic Meridional Overturning Circulation at the onset of the deglaciation, In contrast, the glacial to interglacial SST pattern recorded by G. ruber Mg/Ca probably reflects cold season SSTs. This indicates that the cold season SSTs was likely mediated by climate changes in the southern hemisphere, as it closely tracks the Antarctic timing of deglaciation. Therefore our study reveals that the tropical southwestern Indian Ocean seasonal SST was closely linked to climate changes occurring in both hemispheres. The austral summer and winter recorded by each proxy is further supported with seasonal SST trends modeled by AOGCMs for our core site. Our interpretation that the alkenone and Mg/Ca SSTs are seasonally biased may also explain similar proxy mismatches observed in other tropical regions at the onset of the last termination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we present a unique high-resolution Holocene record of oceanographic and climatic change based on analyses of diatom assemblages combined with biomarker data from a sediment core collected from the Vega Drift, eastern Antarctic Peninsula (EAP). These data add to the climate framework already established by high-resolution marine sedimentary records from the Palmer Deep, western Antarctic Peninsula (WAP). Heavy sea ice conditions and reduced primary productivity were observed prior to 7.4 ka B.P. in relation with the proximity of the glacial ice melt and calving. Subsequent Holocene oceanographic conditions were controlled by the interactions between the Westerlies-Antarctic Circumpolar Current (ACC)-Weddell Gyre dynamics. A warm period characterized by short seasonal sea ice duration associated with a southern shift of both ACC and Westerlies field persisted until 5 ka B.P. This warm episode was then followed by climate deterioration during the middle-to-late Holocene (5 to 1.9 ka B.P.) with a gradual increase in annual sea ice duration triggered by the expansion of the Weddell Gyre and a strong oceanic connection from the EAP to the WAP. Increase of benthic diatom species during this period was indicative of more summer/autumn storms, which was consistent with changes in synoptic atmospheric circulation and the establishment of low- to high-latitude teleconnections. Finally, the multicentennial scale variability of the Weddell Gyre intensity and storm frequency during the late Holocene appeared to be associated with the increased El Niño-Southern Oscillation frequency.