133 resultados para Coccolithophores


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-series of downward alkenone fluxes have been investigated at 200 m depth over a one year sediment trap experiment, in the Northwestern Mediterranean Sea. Alkenone flux maxima occurred in autumn and to a lesser extent in May, during the spring bloom. Temperature estimates calculated from the UK'37 index revealed that alkenone producers preferentially develop in subsurface waters (at about 50 m) in spring, whereas the autumn alkenone production occurred upper in the water column (around 30 m). Examination of the core-top UK'37 index values at various sites of the Northwestern Mediterranean basin, suggested that the spring bloom period do not significantly imprint the temperatures recorded in the sediments. The sedimentary temperature estimates would rather reflect annually integrated SST, with a major influence of the autumnal post-bloom development of the coccolithophores in the euphotic zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea surface temperature (SST), marine productivity, and fluvial input have been reconstructed for the last 11.5 calendar (cal) ka B.P. using a high-resolution study of C37 alkenones, coccolithophores, iron content, and higher plant n-alkanes and n-alkan-1-ols in sedimentary sequences from the inner shelf off the Tagus River Estuary in the Portuguese Margin. The SST record is marked by a continuous decrease from 19C, at 10.5 and 7 ka, to 15C at present. This trend is interrupted by a fall from 18C during the Roman and Medieval Warm Periods to 16C in the Little Ice Age. River input was very low in the early Holocene but increased in the last 3 cal ka B.P. in association with an intensification of agriculture and deforestation and possibly the onset of the North Atlantic Oscillation/Atlantic Multidecadal Oscillation modes of variability. River influence must have reinforced the marine cooling trend relative to the lower amplitude in similar latitude sites of the eastern Atlantic. The total concentration of alkenones reflects river-induced productivity, being low in the early Holocene but increasing as river input became more important. Rapid cooling, of 1-2C occurring in 250 years, is observed at 11.1, 10.6, 8.2, 6.9, and 5.4 cal ka B.P. The estimated age of these events matches the ages of equivalent episodes common in the NE Atlantic- Mediterranean region. This synchronicity reveals a common widespread climate feature, which considering the twentieth century analog between colder SSTs and negative North Atlantic Oscillation (NAO), is likely to reflect periods of strong negative NAO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification due to rising atmospheric CO2 is expected to affect the physiology of important calcifying marine organisms, but the nature and magnitude of change is yet to be established. In coccolithophores, different species and strains display varying calcification responses to ocean acidification, but the underlying biochemical properties remain unknown. We employed an approach combining tandem mass-spectrometry with isobaric tagging (iTRAQ) and multiple database searching to identify proteins that were differentially expressed in cells of the marine coccolithophore species Emiliania huxleyi (strain NZEH) between two CO2 conditions: 395 (~current day) and ~1340 p.p.m.v. CO2. Cells exposed to the higher CO2 condition contained more cellular particulate inorganic carbon (CaCO3) and particulate organic nitrogen and carbon than those maintained in present-day conditions. These results are linked with the observation that cells grew slower under elevated CO2, indicating cell cycle disruption. Under high CO2 conditions, coccospheres were larger and cells possessed bigger coccoliths that did not show any signs of malformation compared to those from cells grown under present-day CO2 levels. No differences in calcification rate, particulate organic carbon production or cellular organic carbon: nitrogen ratios were observed. Results were not related to nutrient limitation or acclimation status of cells. At least 46 homologous protein groups from a variety of functional processes were quantified in these experiments, of which four (histones H2A, H3, H4 and a chloroplastic 30S ribosomal protein S7) showed down-regulation in all replicates exposed to high CO2, perhaps reflecting the decrease in growth rate. We present evidence of cellular stress responses but proteins associated with many key metabolic processes remained unaltered. Our results therefore suggest that this E. huxleyi strain possesses some acclimation mechanisms to tolerate future CO2 scenarios, although the observed decline in growth rate may be an overriding factor affecting the success of this ecotype in future oceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcifying phytoplankton species, coccolithophores, have their calcified coccoliths around the cells, however, their physiological roles are still unknown. Here, we hypothesized that the coccoliths may play a certain role in reducing solar UV radiation (UVR, 280-400 nm) and protect the cells from being harmed. Cells of Emiliania huxleyi with different thicknesses of the coccoliths were obtained by culturing them at different levels of dissolved inorganic carbon and their photophysiological responses to UVR were investigated. Although increased dissolved inorganic carbon decreased the specific growth rate, the increased coccolith thickness significantly ameliorated the photoinhibition of PSII photochemical efficiency caused by UVR. Increase by 91% in the coccolith thickness led to 35% increase of the PSII yield and 22% decrease of the photoinhibition of the effective quantum yield by UVR. The coccolith cover reduced more UVA (320-400 nm) than UVB (280-315 nm), leading to less inhibition per energy at the UV-A band.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated glacial-interglacial differences in sea surface temperature (SST) near Hawaii using two relatively high deposition rate, shallow-water piston cores collected near Oahu, Hawaii. Modern hydrographic data show that local surface water temperatures are broadly consistent with the regional pattern of SSTs in the southern subtropical North Pacific. Past SSTs were estimated on the basis of three independently measured parameters: (1) UK'37 values of alkenones, (2) d18O of Globigerinoides ruber, and (3) assemblages of planktonic foraminifera using the modern analog technique (MAT). The two cores yield similar SST records, and if differences in the ecology of foraminifera and coccolithophores are considered, the three different approaches to estimating SSTs yield consistent results. UK'37-based temperatures, which may represent winter values at this location, were ~2.5°C colder during the Last Glacial Maximum than today, which is consistent with the February MAT estimates. The d18O-based temperature estimates, likely biased toward summer temperatures, indicate that the glacial SSTs were at least 1°C cooler than today, which is comparable to the results of MAT August estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and d18O), or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (Uk'37). We examine clumped isotope (D47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The D47-derived temperatures from <63, <20, <10 and 2-5 µm size fractions of two equatorial Pacific late Miocene-early Pliocene sediment samples (c1; c2) range between ~18-29 {degree sign}C, with c1 temperatures consistently above c2. Removing the >63 µm fraction removes most non-mixed layer components; however, the D47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 µm) are removed during the size fraction separation process. The c1 and <63 µm c2 D47-derived temperatures are comparable to concurrent Uk'37 SSTs. The <20, <10 and 2-5 µm c2 D47-derived temperatures are consistently cooler than expected. The D47-Uk'37 temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 µm fraction (~53% by area), which potentially precipitated at bottom water temperatures of ~6 {degree sign}C . Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and timescale is undertaken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coccolithophores are a key phytoplankton group that exhibit remarkable diversity in their biology, ecology, and calcitic exoskeletons (coccospheres). An understanding of the physiological processes that underpin coccosphere architecture is essential for maximizing the information that can be retrieved from their extensive fossil record. Using culturing experiments on four modern species from three long-lived families, we investigate how coccosphere architecture responds to population shifts from rapid (exponential) to slowed (stationary) growth phases as nutrients become depleted. These experiments reveal statistical differences in cell size and the number of coccoliths per cell between these two growth phases, specifically that cells in exponential-phase growth are typically smaller with fewer coccoliths, whereas cells experiencing growth-limiting nutrient depletion have larger coccosphere sizes and greater numbers of coccoliths per cell. Although the exact numbers are species-specific, these growth-phase shifts in coccosphere geometry are common to four different coccolithophore families (Calcidiscaceae, Coccolithaceae, Isochrysidaceae, Helicosphaeraceae), demonstrating that this is a core physiological response to nutrient depletion across a representative diversity of this phytoplankton group. Polarised light microscopy was used for all coccosphere geometry measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenotypic plasticity describes the phenotypic adjustment of the same genotype to different environmental conditions and is best described by a reaction norm. We focus on the effect of ocean acidification (OA) on inter - and intraspecific reaction norms of three globally important phytoplankton species (Emiliania huxleyi, Gephyrocapsa oceanica, Chaetoceros affinis). Despite significant differences in growth rates between the species, they all showed a high potential for phenotypic buffering (no significant difference in growth rates between ambient and high CO2 condition). Only three coccolithophore genotypes showed a reduced growth in high CO2. Largely diverging responses to high CO2 of single coc-colithophore genotypes compared to the respective mean species responses, however, raise the question if an extrapolation to the population level is possible from single genotype experiments. We therefore compared the mean response of all tested genotypes to a total species response comprising the same genotypes, which was not significantly different in the coccolithophores. Assessing species reac-tion norm to different environmental conditions on short time scale in a genotype-mix could thus reduce sampling effort while increasing predictive power.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

About one-third of the carbon dioxide (CO2) released into the atmosphere as a result of human activity has been absorbed by the oceans, where it partitions into the constituent ions of carbonic acid. This leads to ocean acidification, one of the major threats to marine ecosystems and particularly to calcifying organisms such as corals, foraminifera and coccolithophores. Coccolithophores are abundant phytoplankton that are responsible for a large part of modern oceanic carbonate production. Culture experiments investigating the physiological response of coccolithophore calcification to increased CO2 have yielded contradictory results between and even within species. Here we quantified the calcite mass of dominant coccolithophores in the present ocean and over the past forty thousand years, and found a marked pattern of decreasing calcification with increasing partial pressure of CO2 and concomitant decreasing concentrations of CO3. Our analyses revealed that differentially calcified species and morphotypes are distributed in the ocean according to carbonate chemistry. A substantial impact on the marine carbon cycle might be expected upon extrapolation of this correlation to predicted ocean acidification in the future. However, our discovery of a heavily calcified Emiliania huxleyi morphotype in modern waters with low pH highlights the complexity of assemblage-level responses to environmental forcing factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coccolithophores play an important role in organic matter export due to their production of the mineral calcite that can act as ballast. Recent studies indicated that calcification in coccolithophores may be affected by changes in seawater carbonate chemistry. We investigated the influence of CO2 on the aggregation and sinking behaviour of the coccolithophore Emiliania huxleyi (PML B92/11) during a laboratory experiment. The coccolithophores were grown under low (~180 µatm), medium (~380 µatm), and high (~750 µatm) CO2 conditions. Aggregation of the cells was promoted using roller tables. Size and settling velocity of aggregates were determined during the incubation using video image analysis. Our results indicate that aggregate properties are sensitive to changes in the degree of ballasting, as evoked by ocean acidification. Average sinking velocity was highest for low CO2 aggregates (~1292 m d-1) that also had the highest particulate inorganic to particulate organic carbon (PIC/POC) ratio. Lowest PIC/POC ratios and lowest sinking velocity (~366 m d-1) at comparable sizes were observed for aggregates of the high CO2 treatment. Aggregates of the high CO2 treatment showed a 4-fold lower excess density (~4.2*10**-4 g cm**-3) when compared to aggregates from the medium and low CO2 treatments (~1.7 g*10**-3 cm**-3). We also observed that more aggregates formed in the high CO2 treatment, and that those aggregates contained more bacteria than aggregates in the medium and low CO2 treatment. If applicable to the future ocean, our findings suggest that a CO2 induced reduction of the calcite content of aggregates could weaken the deep export of organic matter in the ocean, particularly in areas dominated by coccolithophores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All species of coccolithophore appear to respond to perturbations of carbonate chemistry in a different way. Here, we show that the degree of malformation, growth rate and stable isotopic composition of organic matter and carbonate produced by two contrasting species of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) are indicative of differences between their photosynthetic and calcification response to changing DIC levels (ranging from ~1100 to ~7800 µmol/kg) at constant pH (8.13 ± 0.02). Gephyrocapsa oceanica thrived under all conditions of DIC, showing evidence of increased growth rates at higher DIC, but C. braarudii was detrimentally affected at high DIC showing signs of malformation, and decreased growth rates. The carbon isotopic fractionation into organic matter and the coccoliths suggests that C. braarudii utilises a common internal pool of carbon for calcification and photosynthesis but G. oceanica relies on independent supplies for each process. All coccolithophores appear to utilize bicarbonate as their ultimate source of carbon for calcification resulting in the release of a proton. But, we suggest that this proton can be harnessed to enhance the supply of CO2(aq) for photosynthesis either from a large internal HCO3- pool which acts as a pH buffer (C. braarudii), or pumped externally to aid the diffusive supply of CO2 across the membrane from the abundant HCO3- (G. oceanica), likely mediated by an internal and external carbonic anhydrase respectively. Our simplified hypothetical spectrum of physiologies may provide a context to understand different species response to changing pH and DIC, the species-specific delta p and calcite "vital effects", as well as accounting for geological trends in coccolithophore cell size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular calcification of coccolithophores generates CO2 and consumes additional energy for acquisition of calcium and bicarbonate ions; therefore, it may correlate with photoprotective processes by influencing the energetics. To address this hypothesis, a calcifying Emiliania huxleyi strain (CS-369) was grown semi-continuously at reduced (0.1 mM, LCa) and ambient Ca2+ concentrations (10 mM, HCa) for 150 d (>200 generations). The HCa-grown cells had higher photosynthetic and calcification rates and higher contents of Chl a and carotenoids compared with the naked (bearing no coccoliths) LCa-grown cells. When exposed to stressfull levels of photosynthetically active radiation (PAR), LCa-grown cells displayed lower photochemical yield and less efficient non-photochemical quenching (NPQ). When the LCa- or HCa-grown cells were inversely shifted to their counterpart medium, LCa to HCa transfer increased photosynthetic carbon fixation (P), calcification rate (C), the C/P ratio, NPQ and pigment contents, whereas those shifted from HCa to LCa exhibited the opposite effects. Increased NPQ, carotenoids and quantum yield were clearly linked with increased or sustained calcification in E. huxleyi. The calcification must have played a role in dissipating excessive energy or as an additional drainage of electrons absorbed by the photosynthetic antennae. This phenomenon was further supported by testing two non-calcifying strains, which showed insignificant changes in photosynthetic carbon fixation and NPQ when transferred to LCa conditions