1000 resultados para Cibicidoides cf. wuellerstorfi, d13C


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the vertical water mass structure of the Vema Channel during the Pliocene have been inferred from benthic foraminiferal assemblages and stable isotopic analyses from three sites of DSDP Leg 72 (South Atlantic). Faunal and isotopic results from Sites 516A and 518 suggest that a major change occurred in deep-water circulation patterns in the late Pliocene near 3.2 Ma. Benthic oxygen isotopic records from Sites 516A and 518 show a characteristic increase in d18O values near 3.2 Ma. This has been documented in numerous Pliocene isotopic records. The magnitude of the oxygen isotopic enrichment near 3.2 Ma appears to increase with water depth from an average enrichment of 0.34 per mil in Site 516A (1313 m) to an average enrichment of 0.58 per mil in Site 518 (3944 m). We suggest that this enrichment resulted partly from a change in deep-water circulation patterns which included a decrease in bottom-water temperatures. Planktonic d18O values near 3.2 Ma show no evidence of an enrichment which would be indicative of an increase in global ice volume. On the contrary, d18O values in Sites 517 and 518 become more depleted near 3.2 Ma, indicating a surface-water warming perhaps due to a change in the strength and/or position of the Brazil Current. An increase in the relative abundance of the benthic foraminifer Nuttalides umbonifera, which is associated with Antarctic Bottom Water (AABW) in the modern ocean, coincides with the benthic 18O enrichment in Site 518. At 3.2 Ma, oxygen and carbon isotopic gradients between Sites 518 (3944 m) and 516A (1313 m) show a marked increase such that Site 518 becomes enriched in 18O and depleted in 13C relative to Site 516A. This enrichment in d18O is interpreted as partly representing a temperature decrease at Site 518; the depletion in d13C indicates a corrosive water mass which is high in metabolic CO2. We suggest that benthic foraminiferal and stable isotopic changes in Site 518 resulted from a pulse-like increase in the formation of AABW near 3.2 Ma. The cause of this circulation event may have been linked to global cooling and/or the final closure of the Central American Seaway.