968 resultados para Cibicides lobatulus, d13C
Resumo:
Quantitative study of benthic foraminifers from the upper Miocene to lower Pliocene section at Site 612 (1404 m present water depth) and the Pliocene section at Site 613 (2323 m present water depth) shows no evidence of widespread downslope transport of shallow-water biofacies or reworking of older material in the greater than 150 µm size fraction. In contrast, upper Miocene sediments from Site 604 (2364 m present water depth) show extensive reworking and downslope transport. At Site 612, benthic foraminifers show a succession from an upper Miocene Bolivina alata-Nonionella sp. biofacies, to an uppermost Miocene Bulimina alazanensis biofacies, to a lower Pliocene Cassidulina reflexa biofacies, to an upper Pliocene Melonis barleeanum-Islandiella laevigata biofacies. Evidence suggests that the Pliocene biofacies are in situ, although they could have been transported downslope from the upper-middle bathyal zone. At Site 613, Uvigerina peregrina dominated the "middle" Pliocene, while Globocassidulina subglobosa was dominant in the early and late Pliocene. High abundances of U. peregrina at Site 613 are associated with high values of sedimentary organic carbon.
Resumo:
The benthic foraminiferal populations along three traverses across the Northwest African continental margin were analyzed on the base of ca. 60 surface sediment samples. Depth ranges of 213 species were established and the main trends of vertical distribution are compared with those known from adjacent regions. Main faunal breaks occure at 100/200 m and 1000/1500 m depth of water. Some species show latitudinal distribution boundaries and the same applies to population density (standing stock), reflecting the regional distribution of nutrients supply by river discharge and upwelling processes. - High proportions of Bolivina test at the lower slope indicate extended downslope transport.
Resumo:
Late Cenozoic benthic foraminiferal faunas from the Caribbean Deep Sea Drilling Project (DSDP) Site 502 (3052 m) and East Pacific DSDP Site 503 (3572 m) were analyzed to interpret bottom-water masses and paleoceanographic changes occurring as the Isthmus of Panama emerged. Major changes during the past 7 Myr occur at 6.7-6.2, 3.4, 2.0, and 1.1 Ma in the Caribbean and 6.7-6.4, 4.0-3.2, 2.1, 1.4, and 0.7 Ma in the Pacific. Prior to 6.7 Ma, benthic foraminiferal faunas at both sites indicate the presence of Antarctic Bottom Water (AABW). After 6.7 Ma benthic foraminiferal faunas indicate a shift to warmer water masses: North Atlantic Deep Water (NADW) in the Caribbean and Pacific Deep Water (PDW) in the Pacific. Flow of NADW may have continued across the rising sill between the Caribbean and Pacific until 5.6 Ma when the Pacific benthic foraminiferal faunas suggest a decrease in bottom-water temperatures. After 5.6 Ma deep-water to intermediate-water flow across the sill appears to have stopped as the bottom-water masses on either side of the sill diverge. The second change recorded by benthic foraminiferal faunas occurs at 3.4 Ma in the Caribbean and 4.0-3.2 Ma in the Pacific. At this time the Caribbean is flooded with cold AABW, which is either gradually warmed or is replaced by Glacial Bottom Water (GBW) at 2.0 Ma and by NADW at 1.1 Ma. These changes are related to global climatic events and to the depth of the sill between the Caribbean and Atlantic rather than the rising Isthmus of Panama. Benthic foraminiferal faunas at East Pacific Site 503 indicate a gradual change from cold PDW to warmer PDW between 4.0 and 3.2 Ma. The PDW is replaced by the warmer, poorly oxygenated PIW at 2.1 Ma. Although the PDW affects the faunas during colder intervals between 1.4 and 0.7 Ma, the PIW remains the principal bottom-water mass in the Guatemala Basin of the East Pacific.
Resumo:
Oligocene to Pleistocene bathyal benthic foraminifers at Broken Ridge (Site 754) and Ninetyeast Ridge (Site 756), eastern Indian Ocean, were investigated for then- stratigraphic distribution and their response to paleoceanographic changes. Q-mode factor analysis was applied to relative abundance data of the most abundant benthic foraminifers. At Site 754, seven varimax assemblages were recognized from the upper Oligocene to the Pleistocene: the Gyroidina orbicularis-Rectuvigerina striata Assemblage in the uppermost Oligocene; the Lenticulina spp. Assemblage in the upper Oligocene to lower Miocene, and in lower Miocene to lowermost middle Miocene; the Burseolina cf. pacifica-Cibicidoides mundulus Assemblage in the lower Miocene; the Planulina wuellerstorfi Assemblage in the upper middle Miocene; the Globocassidulina spp. Assemblage in the upper Miocene; the Gavelinopsis lobatulus-Uvigerina proboscidea Assemblage in the Pliocene; and the Ehrenbergina spp. Assemblage in the Pleistocene. The major faunal changes are complex, but exist between the Lenticulina spp. Assemblage and the P. wuellerstorfi Assemblage at ~13.8 Ma, and between the Ehrenbergina spp. Assemblage and the G. lobatulus Assemblage at ~5 Ma. The development of the P. wuellerstorfi and Globocassidulina spp. Assemblages after 13.8 Ma is correlated with the decrease in temperature of the intermediate waters of the ocean, in turn related to Antarctic glacial expansion. The faunal changes at ~5 Ma are related to the development of low oxygen intermediate water, formed in the presence of a strong thermocline. At Site 756, six varimax assemblages are distributed as follows: the Cibicidoides cf. mundulus-Oridorsalis umbonatus Assemblage in the lower Oligocene; the Epistominella umbonifera-Cibicidoides mundulus Assemblage from the upper Oligocene to the lower Miocene; the Cibicidoides mundulus-Burseolinapacifica Assemblage from lower Miocene to the lower middle Miocene; the Globocassidulina spp. Assemblage from the upper lower Miocene to the Pliocene; the Uvigerina proboscidea Assemblage in the upper Miocene and the Pliocene; and the Globocassidulina sp. D Assemblage in the Pliocene. The main faunal change at this site is between the E. umbonifera Assemblage and the Globocassidulina spp. Assemblage, at ~17.1 Ma. The timing of this faunal change is coeval with faunal changes in the North Atlantic and the Pacific. The change is related to a change in bottom water characteristics caused by an increased influence of carbonate corrosive water from the Antarctic source region, and a change in surface productivity. A low oxygen event at Site 756, which started at about 7.3 Ma, occurred about 2.3 m.y. before that at Site 754. The different response to global paleoceanographic changes is not yet explained, but may be due to the difference of marine topography and the degree of upwelling
Resumo:
During Leg 188 of the Ocean Drilling Program (ODP), employing JOIDES Resolution, we drilled holes at three sites in the southern Indian Ocean in and near Prydz Bay, East Antarctica, between 28 January and 29 February 2000. The objectives of the voyage were to: - Core through sediments deposited when Antarctica underwent the transition from "greenhouse" to the modern "icehouse" state late in the Eocene or early in the Oligocene, at sites obtaining their sediment from the currently subglacial Gamburtsev Mountains that probably were the site of nucleation of the ice sheet (principally Site 1166); - Obtain a sediment record from times at which major changes in the ice sheet volume and characteristics took place as judged from oxygen isotope records, especially at ~23.7 Ma (Oligocene/Miocene boundary), 12-16 Ma (middle Miocene), and 2.7 Ma (late Pliocene) (mainly Site 1165); and - Sample through the upper Pliocene and Quaternary in an attempt to document fluctuations in the extent of the ice sheet over the continental shelf during the Quaternary (especially Site 1167). Paleogene foraminifer-bearing marine sections were not intersected, and thus discussion of marine sections is restricted to the Neogene. Foraminifers are not major contributors to Leg 188 chronostratigraphy but contribute to paleoenvironmental interpretation, to issues such as carbonate compensation depth (CCD) effects and source and history of sediment, and provide a basis for Sr and d18O studies. Chronostratigraphy for the various sections was compiled from diatoms, radiolarians, and paleomagnetism (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.188.101.2001). Foraminifers were sporadic rather than continuous except in short intervals; however, the Neogene foraminifers from the region are very poorly known and the new records proved to be of significant value in paleoenvironmental interpretation. Only at Site 1167 did drilling intersect a section that yielded foraminifers virtually throughout. Other than for the very young section at each site, there is virtually no continuity of assemblages between sites and thus each section is treated here as separate and unrelated.
Resumo:
Late Pleistocene intermediate water ventilation history in the northeastern Pacific has been inferred from benthic foraminiferal carbon isotopic data from seven California margin basins. Secular variations in oceanic d13C recorded at North Pacific ODP Site 849 were subtracted from each basin record leaving a residual d13C history that reflects variations in ventilation. During the previous interglacial intermediate waters above 2000m contained less oxygen than they do today or Pacific deep water at Site 849 was better ventilated. Intermediate water ventilation began to improve during oxygen isotope stage 4 and continued to improve throughout stages 3 and 2. This enhanced ventilation was not contemporaneous at all depths and appears to have progressed upwards through the water column. The diachronous nature of these changes suggest that there was not simply an "on"/"off" mechanism which resulted in higher or lower ventilation in the North Pacific during the last glacial cycle.
Resumo:
Over the Uruguayan shelf and uppermost slope the coalescence of northward flowing Subantarctic Shelf Water and southward flowing Subtropical Shelf Water forms a distinct thermohaline front termed the Subtropical Shelf Front (STSF). Running in a SW direction diagonally across the shelf from the coastal waters at 32°S towards the shelf break at ca. 36°S, the STSF represents the shelf-ward extension of the Brazil-Malvinas Confluence zone. This study reconstructs latitudinal STSF shifts during the Holocene based on benthic foraminifera d18O and d13C, total organic carbon, carbonate contents, Ti/Ca, and grain-size distribution from a high-accumulation sedimentary record located at an uppermost continental-slope terrace. Our data provide direct evidence for: (1) a southern STSF position (to the South of the core site) at the beginning of the early Holocene (>9.4 cal ka BP) linked to a more southerly position of the Southern Westerly Winds in combination with restricted shelf circulation intensity due to lower sea level; (2) a gradual STSF northward migration (bypassing the core site towards the North) primarily forced by the northward migration of the Southern Westerly Winds from 9.4 cal ka BP onwards; (3) a relatively stable position of the front in the interval between 7.2 and 4.0 cal ka BP; (4) millennial-scale latitudinal oscillations close to 36°S of the STSF after 4.0 cal ka BP probably linked to the intensification in El Niño Southern Oscillation; and (5) a southward migration of the STSF during the last 200 years possibly linked to anthropogenic influences on the atmosphere.
Resumo:
Benthic foraminiferal data from Ocean Drilling Program Site 1098 indicate significant changes in deep-water conditions of the Palmer Deep, western Antarctic Peninsula margin, throughout the Holocene (13 ka to present). The earliest Holocene represents a period of transition from the Last Glacial Maximum (LGM). Cold bottom waters, similar to saline shelf water (SSW), dominated the middle Holocene. The late Holocene in the Palmer Deep has been characterized by alternating dominance of circumpolar deep water (CDW) and saline shelf water. These changes have global oceanographic and climatic implications. We suggest that the middle Holocene bottom-water record, in the absence of circumpolar deep water on the western Antarctic Peninsula shelf, indicates high saline shelf water production and/or weakened circumpolar deep water production during the middle Holocene climatic optimum. The late Holocene benthic foraminiferal record indicates rapidly fluctuating sea-ice conditions and may indicate a teleconnection between the South Pacific and Southern Ocean, thus having implications related to the Southern Oscillation Index.
Resumo:
This study presents a new Miocene biostratigraphic synthesis for the high-latitude northeastern North Atlantic region. Via correlations to the bio-magnetostratigraphy and oxygen isotope records of Ocean Drilling Program and Deep Sea Drilling Project Sites, the ages of shallower North Sea deposits have been better constrained. The result has been an improved precision and documentation of the age designations of the existing North Sea foraminiferal zonal boundaries of King (1989) and Gradstein and Bäckström (1996). All calibrations have been updated to the Astronomically Tuned Neogene Time Scale (ATNTS) of Lourens et al. (2004). This improved Miocene biozonation has been achieved through: the updating of age calibrations for key microfossil bioevents, identification of new events, and integration of new biostratigraphic data from a foraminiferal analysis of commercial wells in the North Sea and Norwegian Sea. The new zonation has been successfully applied to two commercial wells and an onshore research borehole. At these high latitudes, where standard zonal markers are often absent, integration of microfossil groups significantly improves temporal resolution. The new zonation comprises 11 Nordic Miocene (NM) Zones with an average duration of 1 to 2 million years. This multi-group combination of a total of 92 bioevents (70 foraminifers and bolboformids; 16 dinoflagellate cysts and acritarchs; 6 marine diatoms) facilitates zonal identification throughout the Nordic Atlantic region. With the highest proportion of events being of calcareous walled microfossils, this zonation is primarily suited to micropaleontologists. A correlation of this Miocene biostratigraphy with a re-calibrated oxygen isotope record for DSDP Site 608 suggests a strong correlation between Miocene planktonic microfossil turnover rates and the inferred paleoclimatic trends. Benthic foraminifera zonal boundaries appear to often coincide with Miocene global sequence boundaries. The biostratigraphic record is punctuated by four main stratigraphic hiati which show variation in their geographic and temporal extent. These are related to the following regional unconformities: basal Neogene, Lower/Middle Miocene ("mid-Miocene unconformity"), basal Upper Miocene and basal Messinian unconformities. Further coring of Neogene sections in the North Sea and Norwegian Sea may better constrain their extent and their effect on the biostratigraphic record.
Resumo:
The Quaternary benthic foraminifers from Leg 95 Sites 612 and 613 were examined with respect to paleoceanographic trends. Data from the two sites indicate the presence of markedly different bottom-water masses, during both glacial and interglacial periods. The dominant interglacial species at Site 612 is Uvigerinct peregrina, which is barely present in corresponding intervals at Site 613. Dominant glacial species are Elphidium excavatum and Cassidulina reniforme at Site 612 and Epistominella takayanagii at Site 613.