949 resultados para Carbonate sediments
Resumo:
The Agulhas Leakage represents a significant portion of the warm, surface return flow of the global overturning circulation and thus may be an important feedback in the ocean climate system. Models indicate that reduced leakage could be caused by a stronger Agulhas Current and/or a more upstream (eastward) Agulhas Retroflection, while a weaker Agulhas Current would result in a more westward retroflection and increased leakage. However, data for the Last Glacial Maximum support both a weaker Agulhas Current and less leakage, implying a possible displacement of the retroflection. We present new 87Sr/86Sr results for modern sediments within this region, confirming that the modern pathway of the Agulhas Current, Retroflection, and Leakage can be traced by terrigenous sediment provenance using Sr isotopes. New 87Sr/86Sr data from sediments deposited during the Last Glacial Maximum suggest that the glacial Agulhas Current and Retroflection followed nearly their modern trajectory. The provenance data appear to rule out both a stronger Agulhas Current and a more upstream Agulhas Retroflection. We conclude that the reduced glacial leakage was caused by the weakened Agulhas Current, with no significant change in the retroflection position. This is inconsistent with the model predictions and thus emphasizes the need for further work in this region.
Resumo:
This report presents mineralogic and geochemical data from Ocean Drilling Program Leg 182 Site 1128 in the Great Australian Bight. Clay mineralogy is dominated by mixed-layer illite-smectite, followed by minor amounts of kaolinite and illite, with intervals of pure smectite. Carbonate mineralogy is exclusively low-Mg calcite, except for one interval of dolomite in lower Oligocene sediments. Carbonate increases significantly in upper Eocene sediments, decreases through the lower Oligocene, then increases again in the Neogene. Quartz is present as a minor component that covaries inversely with carbonate. High-resolution sampling associated with Chron 13 normal (early Oligocene) reveals high-frequency (~23 k.y.) fluctuations in clay mineralogy and carbonate abundance and a positive oxygen and carbon isotope excursion (in bulk carbonates) related to Antarctic glaciation.
Resumo:
Ocean Drilling Program (ODP) Leg 115 post-cruise research was focused on two Maldives sites, more precisely on the top 108 m of Hole 716B (water depth, 540 m), equivalent to the past 3.5 m.y., and the top 19.5 m of Hole 714A (water depth, 2195 m), equivalent to the past 0.55 m.y. These sediments consist of mostly unaltered and undisturbed, turbidite-free, periplatform ooze. Results of our research are compared with existing data on Hole 633A (water depth, 1681 m), drilled in the Bahamas during ODP Leg 101, using age/depth models built on the basis of oxygen isotope, nannofossil, and magnetic stratigraphies. Climate-induced, long-term (roughly 0.5 m.y.) aragonite cycles, superposed on short-term (roughly 0.04 and 0.1 m.y.) aragonite cycles, have been established at least during the past 2.0 m.y., in the Maldives and the Bahamas. Our most interesting result is the clear correlation among the aragonite long-term cycles in the Maldives and the Bahamas and the carbonate-preservation, long-term cycles from the open Pacific, Indian, and North Atlantic oceans. The mid-Brunhes dissolution interval, corresponding to the youngest preservation minima of the carbonate-preservation, longterm cycles, is clearly defined by fine aragonite minimum values in the deep periplatform sites, and by maximum fragmentation of pteropod tests in the shallow sites. Aragonite and planktonic d18O records, usually in phase during the late Pleistocene, display, further back in time, discreet intervals where the two records do not match with one another. Major mismatches between both records occur synchronously in the Maldives and Bahamas periplatform sites and seem to correspond to extreme events of either carbonate-preservation or dissolution in the deep pelagic carbonate sites of the equatorial Pacific Ocean. Based on our findings, short- and long-term aragonite cycles can no longer be explained only by variations of aragonite input from the nearby shallow carbonate banks, in response to their alternate flooding and exposure through cyclic sea-level fluctuations. The aragonite long-term cycles in the periplatform environments are interpreted as carbonatepreservation cycles at intermediate-water depths. Their occurrence shows, therefore, that the carbonate chemistry of the entire water column has been influenced by long-term (0.5 m.y.) cyclic variations during the past 2.0 m.y. These major changes of the water-column carbonate chemistry are linked to the climate-induced carbon cycling among the different atmospheric, oceanic, and sedimentary carbon reservoirs.
Resumo:
Oxygen and carbon isotopic variability of the dominant (<38 µm) carbonate fraction within bedded, organic-carbon rich Lower Cretaceous sediment intervals from various DSDP sites are closely correlated with preservational changes in the carbonates. Isotopic fluctuations are absent where carbonate contents vary little and where the carbonate fraction is dominated by biogenic phytoplankton remains. Within each of the studied intervals oxygen and carbon isotopic ratios become increasingly more negative in samples with carbonate contents higher than about 60% in which the proportion of diagenetic microcarbonate increases rapidly. Carbon isotopic ratios show a trend towards positive values in samples with carbonate contents of less than 40% and strong signs of dissolution. The taxonomic composition of nannofossil assemblages varies little within single intervals, despite significant differential diagenesis among individual beds; this points towards ecological stability of oceanic surface waters during the deposition of alternating beds. Bedding is, however, closely related to changing bioturbation intensity, indicating repeated fluctuations of the deep-water renewal rates and oxygen supply. Various microbial decomposition processes of organic matter leading to bed-specific differential carbonate diagenesis resulted in an amplification of primary bedding features and are considered responsible for most of the observed fluctuations in the stable isotopic ratios and carbonate contents.
Resumo:
Surface sediment samples from the Norwegian-Greenland Sea were investigated to reconstruct the spatial distribution of recent carbonate dissolution on the seafloor. Additionally, carbonate dissolution records of Ocean Drilling Program sites 985 and 987 are presented to outline the development of Pleistocene carbonate preservation. Today, well-preserved carbonate tests can be observed along the inflow of warm Atlantic surface water, extending as far as into the northernmost Norwegian-Greenland Sea. Increased dissolution is indicated along the continental margins and in the deepest parts of the Greenland Basin. Factors favoring carbonate preservation were found to be supersaturation of the water column with respect to calcium carbonate, high carbonate rain and probably excess alkalinity of bottom waters supplied by the arctic river discharge. Supralysoklinal dissolution is most important for recent carbonate dissolution in the Norwegian-Greenland Sea, whereas the deepest parts of the Greenland Basin reaches the calcite saturation horizon. Pleistocene dissolution records show some prominent peaks of extreme carbonate dissolution. During the Brunhes chron, carbonate dissolution maxima can be related to meltwater pulses, which probably inhibited deep-water formation in the Norwegian-Greenland Sea during deglaciation events. Long-term severe carbonate dissolution is evident during the late Matuyama chron. This can be probably related to low carbonate rain, due to a more eastwards located East Greenland Current and the nearly absence of the not yet polar adapted Neogloboquadrina pachyderma sin. during that period. Extreme dissolution events during the late Matuyama indicate strongly reduced deep-water formation.
Resumo:
Two recently drilled Caribbean sites contain expanded sedimentary records of the late Paleocene thermal maximum, a dramatic global warming event that occurred at ca. 55 Ma. The records document significant environmental changes, including deep-water oxygen deficiency and a mass extinction of deep-sea fauna, intertwined with evidence for a major episode of explosive volcanism. We postulate that this volcanism initiated a reordering of ocean circulation that resulted in rapid global warming and dramatic changes in the Earth's environment.
Resumo:
This study addresses changes in the absolute magnitude and spatial geometry of particle flux and export production in a meridional transect across the central equatorial Pacific Ocean's upwelling system during oxygen isotope Stage 11 and Stage 12 and compares these time periods to the current Holocene interglacial system. Temporal and spatial variability in several chemical proxies of export production, and in particular the distributions of Ba, scavenged Al, and P, are studied in a suite of sediment cores gathered along a cross-equator transect at 5°S, 2°S, 0°, 2°N, and 4°N. Because this latitudinal range preserves strong gradients in biogenic particle flux in the modern equatorial Pacific Ocean, we are able to assess variations in the relative magnitude of export production as well as the meridional width of the equatorial system through the late Quaternary glacial/interglacial cycles. During interglacial oxygen isotope Stage 11 the chemical proxies each indicate lower particle flux and export production than during Stage 12. These records are consistent throughout the transect during this time period, but geographic narrowing (during the interglacial) and widening (during the glacial) of the meridional gradient also occurs. Although carbonate concentration varies dramatically through glacial/interglacial cycles at all latitudes studied, the productivity proxies record only minimal glacial/interglacial change at 5°S and 4°N, indicating that the carbonate minima at these latitudes is controlled dominantly by dissolution rather than production. The chemical data indicate that although the spatial geometry of the system during Stages 11 and 12 indicates maximum productivity at the equator during both glacial and interglacial conditions, the absolute magnitude of export production integrated from 5°S to 4°N during Stage 11 was 25-50% less than during Stage 12, and also was 25-50% less than it is now.
Resumo:
Physical properties measurements provide a relatively inexpensive and fast way to obtain high-resolution estimates of the variations in sedimentological properties. To better resolve the validity and cause of the geophysical signals measured by the Ocean Drilling Program (ODP) shipboard multisensor track (MST) instruments, 223 x 10 cm**3 core samples were collected at 4 cm intervals in Core 167-1016B-17H at the California Margin Conception Transect for the measurements of index properties, carbonate content, and opal content. This core was chosen because hole-to-hole stratigraphic correlation of MST data suggested that Core 17H corresponds to a depth interval that displays the greatest range of amplitude of many physical properties.
Resumo:
A preliminary composite depth section was generated for Site 704 by splicing Holes 704A and 704B together over the interval 0-350 mbsf (0-9 m.y.). High-resolution carbonate and opal data from the cores were correlated with the calcium and silicon signals from the GST logging run in Hole 704B to identify missing and disturbed intervals in the cores. Paleomagnetic and biostratigraphic age boundaries were then transferred to the composite depth records to obtain an age model, and sedimentation rates were calculated by linear interpolation between datums. Algorithms relating measured dry-bulk density to carbonate content and depth were generated to produce predicted values of density for every sample. Accumulation rates of bulk, carbonate, opal, and terrigenous sediment components were then computed to generate a record of sediment deposition on the Meteor Rise that has a resolution of better than 200,000 yr for the period from 8.6 to 1.0 m.y. From 8.6 to 2.5 m.y., bulk-accumulation rates on the Meteor Rise averaged less than 2 g/cm**2/1000 yr and were dominated by carbonate deposition. The first significant opal deposition (6.0 m.y.) punctuated a brief (less than 0.6 Ma) approach of the Polar Front Zone (PFZ) northward that heralded a period of increasing severity of periodic carbonate dissolution events (terrigenous maxima) that abruptly terminated at 4.8 m.y. (base of the Thvera Subchron), synchronous with the reflooding of the Mediterranean after the Messinian salinity crisis. From 4.8 to 2.5 m.y., carbonate again dominated deposition, and the PFZ was far south except during brief northward excursions bracketing 4.2-3.9, 3.3-2.9, and 2.8-2.7 m.y. At 2.5 m.y., all components of bulk-accumulation rates increased dramatically (up to 15 g/cm2/1000 yr), and by 2.4 m.y., a pattern of alternating, high-amplitude carbonate and opal cyclicity marked the initiation of rapid glacial to interglaci·l swings in the position of the PFZ, synchronous with the "onset" of major Northern Hemisphere glaciation. Both mass-accumulation rates and the amplitude of the cycles decreased by about 2 m.y., but opal accumulation rates remained high up through the base of the Jaramillo (0.98 m.y.). From 1.9 to 1 m.y., the record is characterized by moderate amplitude fluctuations in carbonate and opal. This record of opal accumulation rates is interpreted as a long-term "Polar Front Indicator" that monitors the advance and retreat of the opal-rich PFZ northward (southward) toward (away from) the Meteor Rise in the subantarctic sector of the South Atlantic Ocean. The timing of PFZ migrations in the subantarctic South Atlantic Ocean is remarkably similar to Pliocene-Pleistocene climate records deduced from benthic oxygen isotope records in the North Atlantic Ocean (Raymo et al., 1989, doi:10.1029/PA004i004p00413; Ruddiman et al., 1989, doi:10.1029/PA004i004p00353). These include northward migrations during "cold" intervals containing strong glacial isotope stages (2.4-2.3, 2.1-2.0, 1.95-1.55, 1.45-1.30 m.y. and at about 1.13 and 1.09 m.y.) and southward migrations during "warm" intervals containing weak glacial and/or strong interglacial stages (2.45-2.40, 2.30-2.10, 2.00-1.95, 1.52-1.45, 1.30-1.18, 1.11, and 1.06-0.93 m.y.). Although our preliminary composite record is not continuous (some stages are obviously missing), there is hope that future work will identify these missing intervals in the as yet incomplete Hole 704B and will extend this high-resolution Southern Hemisphere climate record back to 8.6 m.y.
Resumo:
The carbon and oxygen isotopic compositions of selected bryozoan skeletons from upper Pleistocene bryozoan mounds in the Great Australian Bight (Ocean Drilling Program Leg 182; Holes 1129C, 1131A, and 1132B) were determined. Cyclostome bryozoans, Idmidronea spp. and Nevianipora sp., have low to intermediate magnesian calcite skeletons (1.5-10.0 and 0.9-6.4 molar percentage [mol%] MgCO3, respectively), but a considerable number include marine cements. The cheilostome Adeonellopsis spp. are biminerallic, principally aragonite, with some high magnesian calcite (HMC) (6.6-12.1 mol% MgCO3). The HMC fraction of Adeonellopsis has lower d13C and similar d18O values compared with the aragonite fraction. Reexamination of modern bryozoan isotopic composition shows that skeletons of Adeonellopsis spp. and Nevianipora sp. form close to oxygen isotopic equilibrium with their ambient water. Therefore, changes in glacial-interglacial oceanographic conditions are preserved in the oxygen isotopic profiles. The bryozoan oxygen isotopic profiles are correlated well with marine isotope Stages 1-8 in Holes 1129C and 1132B and to Stages 1-4(?) in Hole 1131A. The horizons of the bryozoan mounds that yield skeletons with heavier oxygen isotopic values can be correlated with isotope Stages 2, 4(?), 6, and 8 in Hole 1129C; Stages 2 and 4(?) in Hole 1131A; and Stages 2, 4, 6, and 8 in Hole 1132B. These results provide supporting evidence for a model for bryozoan mound formation, in which the mounds were formed during intensified upwelling and increased trophic resources during glacial periods.