930 resultados para Barium calcium titanate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

According to detailed petrological, geochemical, and isotope-geochemical study, fragments of fresh pillow lavas with chilled glass margins dredged at the Sierra-Leone test site in the axial rift zone of the MAR between 5° and 7°N correspond to MORB tholeiites, which are not primitive mantle melts, but were differentiated in intermediate magmatic (intrusive) chambers. Small-scale geochemical and Sr-Nd isotope heterogeneities were established for the first time in basalts and their glasses. It was shown that some samples have significant nonsystematic differences in the 87Sr/86Sr ratio between basalts and their chilled glasses and less significant difference in e-Nd; higher Sr ratios can be observed both in glasses and basalts of the same lava fragments. No significant correlation is observed between isotope characteristics of samples and their geochemistry; it was also shown that seawater did not affect Sr and Nd isotope compositions of the chilled glasses from the studied pillow lavas. It is suggested that such differences in isotope ratios are related to small-scale heterogeneity of melts owing to incomplete homogenization during their rapid ascent to the surface. Heterogeneity of basaltic melts is explained by their partial contamination by older plutonic rocks (especially gabbroids) of the lower oceanic crust, through which they ascended to the surface of the ocean floor. The wider scatter of the Sr isotopic ratios relative to Nd ones is related to presence of xenocrysts of calcic plagioclase; correspondingly, absence of a Nd mineral carrier in the rocks results in less distinct Nd isotope variations. It was shown that all studied basalts define a single trend along the mantle correlation array in the Sr-Nd isotope diagram. Causes of this phenomenon remain unclear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxide-free olivine gabbro and gabbro, and oxide olivine gabbro and gabbro make up the bulk of the gabbroic suite recovered from Ocean Drilling Program (ODP) Leg 179 Hole 1105A, which lies 1.2 km away from Hole 735B on the eastern transverse ridge of the Atlantis II Fracture Zone, Southwest Indian Ridge. The rocks recovered during Leg 179 show striking similarities to rocks recovered from the uppermost 500 m of Hole 735B during ODP Leg 118. The rocks of the Atlantis platform were likely unroofed as part of the footwall block of a large detachment fault on the inside corner of the intersection of the Southwest Indian Ridge and the Atlantis II Transform at ~11.5 Ma. We analyzed the lithologic, geochemical, and structural stratigraphy of the section. Downhole lithologic variation allowed division of the core into 141 lithologic intervals and 4 main units subdivided on the basis of predominance of oxide gabbroic vs. oxide-free gabbroic rocks. Detailed analyses of whole-rock chemistry, mineral chemistry, microstructure, and modes of 147 samples are presented and clearly show that the gabbroic rocks are of cumulate origin. These studies also indicate that geochemistry results correlate well with downhole magnetic susceptibility and Formation MicroScanner (FMS) resistivity measurements and images. FMS images show rocks with a well-layered structure and significant numbers of mappable layer contacts or compositional contrasts. Downhole cryptic mineral and whole-rock chemical variations depict both "normal" and inverse fine-scale variations on a scale of 10 m to <2 m with significant compositional variation over a short distance within the 143-m section sampled. A Mg# shift in whole-rock or Fo contents of olivine of as much as 20-30 units over a few meters of section is not atypical of the extreme variation in downhole plots. The products of the earliest stages of basaltic differentiation are not represented by any cumulates, as the maximum Fo content was Fo78. Similarly, the extent of fractionation represented by the gabbroic rocks and scarce granophyres in the section is much greater than that represented in the Atlantis II basalts. The abundance of oxide gabbros is similar to that in Hole 735B, Unit IV, which is tentatively correlated as a similar unit or facies with the oxide gabbroic units of Hole 1105A. Oxide phases are generally present in the most fractionated gabbroic rocks and lacking in more primitive gabbroic rocks, and there is a definite progression of oxide abundance as, for example, the Mg# of clinopyroxene falls below 73-75. Coprecipitation of oxide at such early Mg#s cannot be modeled by perfect fractional crystallization. In situ boundary layer fractionation may offer a more plausible explanation for the complex juxtaposition of oxide- and nonoxide-bearing more primitive gabbroic rocks. The geochemical signal may, in part, be disrupted by the presence of mylonitic shear zones, which strike east-west and dip both to the south and north, but predominantly to the south away from the northern rift valley where they formed. Downhole deformation textures indicate increasing average strain and crystal-plastic deformation in units that contain oxides. Oxide-rich zones may represent zones of rheologic weakness in the cumulate section along which mylonitic and foliated gabbroic shear zones nucleate in the solid state at high temperature, or the oxide may be a symptom of former melt-rich zones and hypersolidus flow, as predicted during study of Hole 735B.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Ninetyeast Ridge (NER), a north-south striking, 5,000 km long, 77 to 43 Ma chain of basaltic submarine volcanoes in the eastern Indian Ocean formed as a hotspot track created by rapid northward migration of the Indian Plate over the Kerguelen hotspot. Based on the major and trace element contents of unaltered basaltic glasses from six locations along the NER, we show that the NER was constructed by basaltic magma derived from at least three geochemically distinct mantle sources: (1) a source enriched in highly incompatible elements relative to primitive mantle like the source of the 29-24 Ma flood basalts in the Kerguelen Archipelago; (2) an incompatible element-depleted source similar to the source of Mid-Ocean Ridge Basalt (MORB) erupted along the currently active Southeast Indian Ridge (SEIR); and (3) an incompatible element-depleted source that is compositionally and mineralogically distinct from the source of SEIR MORB. Specifically, this depleted mantle source was garnet-bearing and had higher Y/Dy and Nb/Zr, but lower Zr/Sm, than the SEIR MORB source. We infer that this third source formed as a garnet-bearing residue created during a previous melting event, perhaps an initial partial melting of the mantle hotspot. Subsequently, this residue partially melted over a large pressure range, from slightly over 3 GPa to less than 1 GPa, and to a high extent (~ 30%) thereby creating relatively high SiO2 and FeO contents in some NER basalts relative to SEIR MORB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distributions of calcium carbonate, of amorphous silica, and of 21 chemical compounds and elements in sediments of Holes 515A, 515B, 516, 516F, 517, and 518 are highly nonuniform; they change depending on the sediment types, grain size, and mineral composition. The main source of the lithogenous elements (K, Li, Rb, Fe, Ti, Zr, Ni, Cr, Sn) is terrigenous matter of South America. These elements correlate well or at least satisfactorily with each other and with the sum of clay minerals. CaCO3, amorphous SiO2 and organic C form a second group, the main source of which is biota of the ocean. Zn, Cu, Ba, Mo, (V, Na) are a third group, which is supplied by both terrigenous and biogenic matter. Judging by the distribution of chemical elements and components in sediments of Site 515, this area of the Brazil Basin is characterized by the rather constant conditions of pelagic terrigenous sedimentation from upper Eocene till Holocene. Small changes in chemical composition of sediments throughout the section are linked mainly to the evolution of subaerial source provinces, changes in hydrodynamic regime, and fluctuations of the ocean level. The chemical composition of sediments from the Rio Grande Rise sites suggests the existence of three main stages of sedimentation in this area. The first stage is the initial period of sediment accumulation on basalts at the beginning of the Late Cretaceous. Then followed sedimentary conditions notable for their sharp changes in chemical composition and type. Beginning in the middle Eocene and persisting into the Holocene, stable conditions of sedimentation characterize a third stage, represented by the formation of approximately 700 m of nannofossil oozes of rather monotonous chemical composition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The geochemistry of basalts recovered during Leg 72 is described with emphasis on trace elements. Only Hole 516F penetrated basement; the basalts recovered are plagioclase-phyric and olivine-phyric and pervasively altered. Chemically, the basalts from Hole 516F are rather uniform in composition. However, four distinct geochemical units can be recognized, although the chemistry of two of the units appears to be controlled by chemical mobility associated with alteration. The two less-altered units cannot be related by fractional crystallization processes. Hole 516F basalts have a trace element chemistry characteristic of T-type mid-ocean ridge basalt; rare-earth element patterns (as indicated by Ce/Y ratios) are mildly fractionated flight rare-earth element enriched), and a number of incompatible element ratios are close to chondritic.