779 resultados para Balearic Islands, western Mediterranean Sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first data on content of inorganic reduced sulfur compounds [H2S, S°, S2O3(2-), SO3(2-)] were obtained at two stations in the northeastern Levant Sea (Mediterranean Basin). With lower detection limit for the mentioned sulfur forms of 30 nM, sulfide forms were not found, while thiosulfate concentration varied from 178 to 890 nM (from 24 to 78 % of total reduced S), and S° varied from 156 to 1090 nM. Vertical distribution of these compounds showed irregular character; correlation between total reduced S maxima, fluorescence, and increase of nutrient element content near the lower pycnocline boundary was observed. The maximum total sulfur concentration in the surface layer was likely due an anthropogenic influence. The ''starting'' mechanism that controls appearance and distribution of sulfur compounds in oxygen-containing water is the process of bacterial sulfate reduction in micropatches of fresh organic detritus. Reduced sulfur forms participate further in a series of chemical and biochemical processes. Contribution of hydrolysis of organic sulfur-containing compounds is insignificant for the region in study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C37 alkenone fluxes were measured with sediment traps at 200 m depth over the years 1989/1990 and 1993/1994 to assess the interannual variability of the alkenone flux from the surface waters of the Mediterranean Sea. Fall and spring were identified as the high flux periods. SST estimates derived from the UK'37 index indicated 50 m and 30 m as major production depths in spring and fall, respectively. Althought interannual variation of alkenone fluxes was notable, the seasonality and depth of production appeared to be recurrent features of the coccolithophorid cycle of production. Alkenone fluxes at 1000 m measured over the year 1993/1994 were about 5 times lower than at 200 m and show no evidence of preferential preservation relative to the organic carbon between these depths. SST predicted at 200 m and 1000 m indicated a remarkably good transfer of the surface temperature signal to deeper layers.