872 resultados para Anadenanthera peregrina
Resumo:
We investigate changes in the delivery and oceanic transport of Amazon sediments related to terrestrial climate variations over the last 250 ka. We present high-resolution geochemical records from four marine sediment cores located between 5 and 12° N along the northern South American margin. The Amazon River is the sole source of terrigenous material for sites at 5 and 9° N, while the core at 12° N receives a mixture of Amazon and Orinoco detrital particles. Using an endmember unmixing model, we estimated the relative proportions of Amazon Andean material ("%-Andes", at 5 and 9° N) and of Amazon material ("%-Amazon", at 12° N) within the terrigenous fraction. The %-Andes and %-Amazon records exhibit significant precessional variations over the last 250 ka that are more pronounced during interglacials in comparison to glacial periods. High %-Andes values observed during periods of high austral summer insolation reflect the increased delivery of suspended sediments by Andean tributaries and enhanced Amazonian precipitation, in agreement with western Amazonian speleothem records. Increased Amazonian rainfall reflects the intensification of the South American monsoon in response to enhanced land-ocean thermal gradient and moisture convergence. However, low %-Amazon values obtained at 12° N during the same periods seem to contradict the increased delivery of Amazon sediments. We propose that reorganizations in surface ocean currents modulate the northwestward transport of Amazon material. In agreement with published records, the seasonal North Brazil Current retroflection is intensified (or prolonged in duration) during cold substages of the last 250 ka (which correspond to intervals of high DJF or low JJA insolation) and deflects eastward the Amazon sediment and freshwater plume.
Resumo:
The complex deglacial to Holocene oceanographic development in the Gulf of Guayaquil (Eastern Equatorial Pacific) is reconstructed for sea surface and subsurface ocean levels from (isotope) geochemical proxies based on marine sediment cores. At sea surface, southern sourced Cold Coastal Water and tropical Equatorial Surface Water/Tropical Surface Water are intimately related. In particular since ~10 ka, independent sea surface temperature proxies capturing different seasons emphasize the growing seasonal contrast in the Gulf of Guayaquil, which is in contrast to ocean areas further offshore. Cold Coastal Water became rapidly present in the Gulf of Guayaquil during the austral winter season in line with the strengthening of the Southeast Trades, while coastal upwelling off Peru gradually intensified and expanded northward in response to a seasonally changing atmospheric circulation pattern affecting the core locations intensively since 4 ka BP. Equatorial Surface Water, instead, was displaced and Tropical Surface Water moved northward together with the Equatorial Front. At subsurface, the presence of Equatorial Under Current-sourced Equatorial Subsurface Water was continuously growing, prominently since ~10-8 ka B.P. During Heinrich Stadial 1 and large parts of the Bølling/Allerød, and similarly during short Holocene time intervals at ~5.1-4 ka B.P. and ~1.5-0.5 ka B.P., the admixture of Equatorial Subsurface Water was reduced in response to both short-term weakening of Equatorial Under Current strength from the northwest and emplacement by tropical Equatorial Surface Water, considerably warming the uppermost ocean layers.
Resumo:
Twenty-three sediment intervals from top of Site 650 down to 510 m below seafloor have been studied. Their thicknesses vary between 0.25 m and about 40 m. The studied deposits are turbidites or parts of them except one which is interpreted as an ash-fall layer. The composition of the turbidites signalizes sources from shallow water/coastal areas as well as from deep water levels. Repeated mobilization and displacement seems to have been common. Volcaniclastic material is the dominant component of the whole studied part of Site 650 sedimentary sequence. Ashfall deposits as well as normal open marine sediments are rare.
Resumo:
Benthic foraminiferal assemblage compositions and sedimentary geochemical parameters were analyzed in two radiocarbon dated sediment cores from the upwelling area off NW Africa at 12°N, to reconstruct productivity changes during the last 31 kyr. High-latitude cold events and variations in low-latitude summer insolation influenced humidity, wind systems, and the position of the tropical rain belt over this time period. This in turn caused changes in intensity and seasonality of primary productivity off the southern Northwest African continental margin. High accumulation rates of benthic foraminifera, carbonate, and organic carbon during times of north Atlantic melt water events Heinrich 2 (25.4 to 24.3 kyr BP) and 1 (16.8 to 15.8 kyr BP) indicate high productivity. Dominance of infaunal benthic foraminiferal species and high numbers of deep infaunal specimens during that time indicate a strong and sustained supply of refractory organic matter reworked from the upper slope and shelf. A more southerly position of the tropical rainbelt and the Northeast trade wind belt during Heinrich 2 and 1 may have enhanced wind intensity and almost permanent upwelling, driving this scenario. A phytodetritus-related benthic fauna indicates seasonally pulsed input of labile organic matter but generally low year-round productivity during the Last Glacial Maximum (23 to 18 kyr BP). The tropical rainbelt is more expanded to the North than during Heinrich Events, and relatively weak NE trade winds resulted in seasonal and weak upwelling, thus lower productivity. High productivity characterized by a seasonally high input of labile organic matter, is indicated for times of orbital forced warming, such as the African Humid Period (9.8 to 7 kyr BP). An intensified African monsoon during boreal summer and the northernmost position of the tropical rainbelt within the last 31 kyr resulted in enhanced river discharge from the northward-extended drainage area (or river basin) initiating intense phytoplankton blooms. In the late Holocene (4 to 0 kyr BP) strong carbonate dissolution may have been caused by even more enhanced organic matter fluxes to the sea floor. Increasing aridity on the continent and stronger NE trade winds induced intensive, seasonal coastal upwelling.
Resumo:
The distribution, biomass, and diversity of living (Rose Bengal stained) deep-sea benthic foraminifera (>30 µm) were investigated with multicorer samples from seven stations in the Arabian Sea during the intermonsoonal periods in March and in September/October, 1995. Water depths of the stations ranged between 1916 and 4425 m. The distribution of benthic foraminifera was compared with dissolved oxygen, % organic carbon, % calcium carbonate, ammonium, % silica, chloroplastic pigment equivalents, sand content, pore water content of the sediment, and organic carbon flux to explain the foraminiferal patterns and depositional environments. A total of six species-communities comprising 178 living species were identified by principal component analysis. The seasonal comparison shows that at the western stations foraminiferal abundance and biomass were higher during the Spring Intermonsoon than during the Fall Intermonsoon. The regional comparison indicates a distinct gradient in abundance, biomass, and diversity from west to east, and for biomass from north to south. Highest values are recorded in the western part of the Arabian Sea, where the influence of coastal and offshore upwelling are responsible for high carbon fluxes. Estimated total biomass of living benthic foraminifera integrated for the upper 5 cm of the sediment ranged between 11 mg Corg m**-2 at the southern station and 420 mg Corg m**-2 at the western station. Foraminifera in the size range from 30 to 125 ?m, the so-called microforaminifera, contributed between 20 and 65% to the abundance, but only 3% to 28% to the biomass of the fauna. Highest values were found in the central and southern Arabian Sea, indicating their importance in oligotrophic deep-sea areas. The overall abundance of benthic foraminifera is positively correlated with oxygen content and pore volume, and partly with carbon content and chloroplastic pigment equivalents of the sediment. The distributional patterns of the communities seem to be controlled by sand fraction, dissolved oxygen, calcium carbonate and organic carbon content of the sediment, but the critical variables are of different significance for each community.
Resumo:
Radiolarian census and abundance data were collected from three deep-sea cores drilled by the Ocean Drilling Program Sites 884, 887 and 1151 to investigate patterns of ecologic changes in space and time during the last 16 million years for the mid-latitude to subarctic North Pacific. High concentrations of radiolarians occurred between 9.0 and 2.7 Ma. Radiolarian species richness was highest in the early middle Miocene at each site and gradually decreased up to about 7 Ma, coinciding with a well-established global cooling trend. A degree of overlap index calculated for radiolarian assemblages revealed 11 faunal change events, of which 8 corresponded to global cooling events and expansions of polar ice sheets. Three of the faunal change events were observed within the peak of radiolarian accumulation rate and were ascribed to changes in primary productivity in the North Pacific rather than global climatic changes. Our assemblage analyses revealed that north-south differentiation in radiolarian assemblages in the northwestern Pacific has existed since 16 Ma and became more distinct via major steps at 6.8 Ma and 2.7 Ma, coinciding with major glaciation events, and that east-west faunal contrasts in the subarctic region became obvious beginning at 11.7 Ma and changed to a different mode around 6.8 Ma. The observed east-west faunal differences possibly reflect east to west climate differences that were characterized by cooler temperatures in the east than the west during the late Miocene (11.7-6.8 Ma) and then by the opposite temperature trend (6.8 Ma-Recent). A severe glaciation at 2.7 Ma played a large role, particularly in temporal changes in radiolarian accumulation rate and assemblage composition.
Resumo:
We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.
Resumo:
Stratigraphic assemblages of Quaternary through early Eocene benthic foraminifers were recovered among 10 Peru margin drill sites. Various hiatuses and intervals barren in foraminifers characterize the sections, but numerous samples contain abundant, well-preserved benthic foraminifers. Bathymetry of the extant species and California-based estimates of the paleobathymetry of the extinct species permit recognition of Quaternary sea-level fluctuations between shelf and upper bathyal depths that produced vertical migrations of oxygenated and low-oxygen habitats at the six shallow sites. Assemblages from lower-slope sites at about 9° and 11°S indicate a general subsidence of the continental margin from shelf or upper bathyal depths in Eocene time to the present lower bathyal depths. Data from 11°S suggest a major part of this subsidence occurred in late Oligocene to early Miocene time. Downslope-transported shelf specimens, particularly the small biserial species, Bolivina costata and B. vaughani, are major contributors to these lower bathyal assemblages from the middle Miocene through Quaternary time.
Resumo:
Well-preserved radiolarian assemblages of late middle Miocene to early Pliocene age are found in Ocean Drilling Program (ODP) Hole 1138A (Cores 183-1138A-12R to 20R), which was rotary drilled into the Central Kerguelen Plateau. The faunas are typical for Antarctic assemblages of this time interval, and the site appears to have been south of the Polar Front during the time period studied. Despite only moderate drilling recovery of the section, most late middle to early Pliocene radiolarian zones are present, although at the sample resolution used, subzones could not be identified. A significant discontinuity in the section is present at the boundary between lithologic Units I and II (between Cores 183-1138A-12R and 13R), corresponding to an interval from at least 4.6 to 6.1 Ma. Mixed late Miocene-early Pliocene assemblages are seen in the base of Core 183-1138A-12R (Sample 183-1138A-12R-3, 20 cm), and the overlying basal Pliocene Tau Zone appears to be absent. It cannot be determined if the discontinuity is due to incomplete recovery of the section and drilling disturbance or if it reflects a primary sedimentary structure - a hiatus or interval of condensed sedimentation.
Resumo:
Changes in the vertical water mass structure of the Vema Channel during the Pliocene have been inferred from benthic foraminiferal assemblages and stable isotopic analyses from three sites of DSDP Leg 72 (South Atlantic). Faunal and isotopic results from Sites 516A and 518 suggest that a major change occurred in deep-water circulation patterns in the late Pliocene near 3.2 Ma. Benthic oxygen isotopic records from Sites 516A and 518 show a characteristic increase in d18O values near 3.2 Ma. This has been documented in numerous Pliocene isotopic records. The magnitude of the oxygen isotopic enrichment near 3.2 Ma appears to increase with water depth from an average enrichment of 0.34 per mil in Site 516A (1313 m) to an average enrichment of 0.58 per mil in Site 518 (3944 m). We suggest that this enrichment resulted partly from a change in deep-water circulation patterns which included a decrease in bottom-water temperatures. Planktonic d18O values near 3.2 Ma show no evidence of an enrichment which would be indicative of an increase in global ice volume. On the contrary, d18O values in Sites 517 and 518 become more depleted near 3.2 Ma, indicating a surface-water warming perhaps due to a change in the strength and/or position of the Brazil Current. An increase in the relative abundance of the benthic foraminifer Nuttalides umbonifera, which is associated with Antarctic Bottom Water (AABW) in the modern ocean, coincides with the benthic 18O enrichment in Site 518. At 3.2 Ma, oxygen and carbon isotopic gradients between Sites 518 (3944 m) and 516A (1313 m) show a marked increase such that Site 518 becomes enriched in 18O and depleted in 13C relative to Site 516A. This enrichment in d18O is interpreted as partly representing a temperature decrease at Site 518; the depletion in d13C indicates a corrosive water mass which is high in metabolic CO2. We suggest that benthic foraminiferal and stable isotopic changes in Site 518 resulted from a pulse-like increase in the formation of AABW near 3.2 Ma. The cause of this circulation event may have been linked to global cooling and/or the final closure of the Central American Seaway.
Resumo:
A stable-isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthic foraminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high-resolution record of deep-sea delta18O and delta13C over the past 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the delta18O and delta13C records is concentrated in the well-known orbital periods of 100, 41, and 23 k.y. In the 100-k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2 Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of delta18O and especially of delta13C decreases in the 41-k.y. band as it grows in the 100-k.y. band, consistent with a transfer of energy into an orbitally-paced internal oscillation. A weak 30-k.y. rhythm, present in both delta18O and delta13C, may reflect nonlinear interaction between the 41-k.y. and 100-k.y. bands in the evolving climate system. In the 23-k.y. and 19-k.y. bands associated with orbital precession, delta18O and delta13C are not coherent with each other on long time scales, and do not evolve like the 100-k.y. and 41-k.y. bands. This suggests that the source of the growing 100-k.y. oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at this site also vary with a strong 100-k.y. cycle. Unlike the isotope records, the amplitude of 100-k.y. variations in sedimentation rate is relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co-vary with orbital eccentricity, rather than with global climate as reflected by delta18O or delta13C. A source of this 100-k.y. cycle of sedimentation rate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energy balance climate model drives variations of monsoonal climates with a 100-k.y. rhythm. For the interval younger than 0.9 Ma, high sedimentation rates in the 100-k.y. band are consistently associated with glacial stages. This change of pattern suggests that when the amplitude of glacial cycles become large enough, their global effects overpower a local monsoon-driven variation in sedimentation rate at Site 846.