363 resultados para Aisberg-2-NDM-14-1


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentological and geochemical (XRF) data together with information from diatom and benthic foraminiferal records of a 3.5 m long gravity core from Ameralik Fjord, southern West Greenland, is used for reconstructing late-Holocene environmental changes in this area. The changes are linked to large-scale North Atlantic ocean and climate variability. AMS 14C-dating of benthic foraminifera indicates that the sediment core records the last 4400 years and covers the termination of the Holocene Thermal Maximum (HTM). The late HTM (4.4 3.2 ka BP) is characterized by high accumulation rates of fine (silty) sediments related to strong meltwater discharge from the Inland Ice. The HTM benthic foraminiferal fauna demonstrates the presence of well-ventilated, saline bottom water originating from inflow of subsurface West Greenland Current water of Atlantic (Irminger Sea) origin. The hydrographic conditions were further characterized by limited sea ice probably related to a mild and relatively windy winter climate. After 3.2 ka BP lower fine-grained sedimentation rates, but a larger input from sea-ice rafted or aeolian coarse material prevailed. This can be related to colder atmospheric conditions with a decreased meltwater discharge and more widespread sea-ice cover in the fjord.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiproxy record including benthic foraminifera, diatoms and XRF data of a marine sediment core from a SW Greenland fjord provides a detailed reconstruction of the oceanographic and climatic variations of the region during the last 4400 cal. years. The lower part of our record represents the final termination of the Holocene Thermal Maximum. After the onset of the 'Neoglaciation' at approximately 3.2 ka cal. BP, the fjord system was subject to a number of marked hydrographical changes that were closely linked to the general climatic and oceanographic development of the Labrador Sea and the North Atlantic region. Our data show that increased advection of Atlantic water (Irminger Sea Water) from the West Greenland Current into the Labrador Sea was a typical feature of Northeast Atlantic cooling episodes such as the 'Little Ice Age' and the 'European Dark Ages', while the advection of Irminger Sea Water decreased significantly during warm episodes such as the 'Mediaeval Warm Period' and the 'Roman Warm Period'.Whereas the 'Mediaeval Warm Period' was characterized by relatively cool climate as suggested by low meltwater production, the preceding 'Dark Ages' display higher meltwater runoff and consequently warmer climate. When compared with European climate, these regional climate anomalies indicate persisting patterns of advection of colder, respectively warmer air masses in the study region during these periods and thus a long-term seesaw climate pattern between West Greenland and Europe.